Last active
June 12, 2020 18:34
-
-
Save borisdayma/62fd9338aae4f373a9c0709a8961f5bc to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
``` | |
boris@Desk-Ubuntu:~/Projects/tests$ python ../transformers/examples/text-classification/run_tf_glue.py --model_name_or_path bert-base-cased --task_name $TASK_NAME --do_train --do_eval --max_seq_length 128 --per_device_train_batch_size 32 --learning_rate 2e-5 --num_train_epochs 3.0 --output_dir /tmp/$TASK_NAME/ --overwrite_output_dir --logging_dir log --evaluate_during_training --eval_steps 50 --logging_steps 10 | |
06/12/2020 13:16:33 - INFO - transformers.training_args_tf - Tensorflow: setting up strategy | |
2020-06-12 13:16:33.776937: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcuda.so.1 | |
2020-06-12 13:16:33.798135: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:981] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero | |
2020-06-12 13:16:33.798688: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1561] Found device 0 with properties: | |
pciBusID: 0000:01:00.0 name: GeForce RTX 2080 Ti computeCapability: 7.5 | |
coreClock: 1.545GHz coreCount: 68 deviceMemorySize: 10.76GiB deviceMemoryBandwidth: 573.69GiB/s | |
2020-06-12 13:16:33.798870: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudart.so.10.1 | |
2020-06-12 13:16:33.800300: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcublas.so.10 | |
2020-06-12 13:16:33.801603: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcufft.so.10 | |
2020-06-12 13:16:33.801954: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcurand.so.10 | |
2020-06-12 13:16:33.803576: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcusolver.so.10 | |
2020-06-12 13:16:33.804394: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcusparse.so.10 | |
2020-06-12 13:16:33.807845: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudnn.so.7 | |
2020-06-12 13:16:33.808030: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:981] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero | |
2020-06-12 13:16:33.808639: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:981] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero | |
2020-06-12 13:16:33.809191: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1703] Adding visible gpu devices: 0 | |
06/12/2020 13:16:33 - INFO - __main__ - n_gpu: 1, distributed training: False, 16-bits training: False | |
06/12/2020 13:16:33 - INFO - __main__ - Training/evaluation parameters TFTrainingArguments(output_dir='/tmp/MRPC/', overwrite_output_dir=True, do_train=True, do_eval=True, do_predict=False, evaluate_during_training=True, per_device_train_batch_size=32, per_device_eval_batch_size=8, per_gpu_train_batch_size=None, per_gpu_eval_batch_size=None, gradient_accumulation_steps=1, learning_rate=2e-05, weight_decay=0.0, adam_epsilon=1e-08, max_grad_norm=1.0, num_train_epochs=3.0, max_steps=-1, warmup_steps=0, logging_dir='log', logging_first_step=False, logging_steps=10, save_steps=500, save_total_limit=None, no_cuda=False, seed=42, fp16=False, fp16_opt_level='O1', local_rank=-1, tpu_num_cores=None, tpu_metrics_debug=False, dataloader_drop_last=False, tpu_name=None, eval_steps=50, debug=False) | |
06/12/2020 13:16:33 - INFO - transformers.configuration_utils - loading configuration file https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-config.json from cache at /home/boris/.cache/torch/transformers/b945b69218e98b3e2c95acf911789741307dec43c698d35fad11c1ae28bda352.9da767be51e1327499df13488672789394e2ca38b877837e52618a67d7002391 | |
06/12/2020 13:16:33 - INFO - transformers.configuration_utils - Model config BertConfig { | |
"architectures": [ | |
"BertForMaskedLM" | |
], | |
"attention_probs_dropout_prob": 0.1, | |
"finetuning_task": "mrpc", | |
"hidden_act": "gelu", | |
"hidden_dropout_prob": 0.1, | |
"hidden_size": 768, | |
"initializer_range": 0.02, | |
"intermediate_size": 3072, | |
"layer_norm_eps": 1e-12, | |
"max_position_embeddings": 512, | |
"model_type": "bert", | |
"num_attention_heads": 12, | |
"num_hidden_layers": 12, | |
"pad_token_id": 0, | |
"type_vocab_size": 2, | |
"vocab_size": 28996 | |
} | |
06/12/2020 13:16:34 - INFO - transformers.configuration_utils - loading configuration file https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-config.json from cache at /home/boris/.cache/torch/transformers/b945b69218e98b3e2c95acf911789741307dec43c698d35fad11c1ae28bda352.9da767be51e1327499df13488672789394e2ca38b877837e52618a67d7002391 | |
06/12/2020 13:16:34 - INFO - transformers.configuration_utils - Model config BertConfig { | |
"architectures": [ | |
"BertForMaskedLM" | |
], | |
"attention_probs_dropout_prob": 0.1, | |
"hidden_act": "gelu", | |
"hidden_dropout_prob": 0.1, | |
"hidden_size": 768, | |
"initializer_range": 0.02, | |
"intermediate_size": 3072, | |
"layer_norm_eps": 1e-12, | |
"max_position_embeddings": 512, | |
"model_type": "bert", | |
"num_attention_heads": 12, | |
"num_hidden_layers": 12, | |
"pad_token_id": 0, | |
"type_vocab_size": 2, | |
"vocab_size": 28996 | |
} | |
06/12/2020 13:16:34 - INFO - transformers.tokenization_utils - loading file https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-vocab.txt from cache at /home/boris/.cache/torch/transformers/5e8a2b4893d13790ed4150ca1906be5f7a03d6c4ddf62296c383f6db42814db2.e13dbb970cb325137104fb2e5f36fe865f27746c6b526f6352861b1980eb80b1 | |
06/12/2020 13:16:35 - INFO - transformers.modeling_tf_utils - loading weights file https://cdn.huggingface.co/bert-base-cased-tf_model.h5 from cache at /home/boris/.cache/torch/transformers/17e64dc7dc200314bc70dd8198010773501bcabb65a493c1ae7183b8c9a5b1ff.908e74db1113031d6827eb22808cf370b0aeded6e6ac20d0f07af0a334e195cc.h5 | |
2020-06-12 13:16:35.215122: I tensorflow/core/platform/cpu_feature_guard.cc:143] Your CPU supports instructions that this TensorFlow binary was not compiled to use: SSE4.1 SSE4.2 AVX AVX2 FMA | |
2020-06-12 13:16:35.237139: I tensorflow/core/platform/profile_utils/cpu_utils.cc:102] CPU Frequency: 3299770000 Hz | |
2020-06-12 13:16:35.237442: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x560b206828a0 initialized for platform Host (this does not guarantee that XLA will be used). Devices: | |
2020-06-12 13:16:35.237463: I tensorflow/compiler/xla/service/service.cc:176] StreamExecutor device (0): Host, Default Version | |
2020-06-12 13:16:35.237700: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:981] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero | |
2020-06-12 13:16:35.238413: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1561] Found device 0 with properties: | |
pciBusID: 0000:01:00.0 name: GeForce RTX 2080 Ti computeCapability: 7.5 | |
coreClock: 1.545GHz coreCount: 68 deviceMemorySize: 10.76GiB deviceMemoryBandwidth: 573.69GiB/s | |
2020-06-12 13:16:35.238454: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudart.so.10.1 | |
2020-06-12 13:16:35.238472: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcublas.so.10 | |
2020-06-12 13:16:35.238489: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcufft.so.10 | |
2020-06-12 13:16:35.238507: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcurand.so.10 | |
2020-06-12 13:16:35.238523: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcusolver.so.10 | |
2020-06-12 13:16:35.238539: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcusparse.so.10 | |
2020-06-12 13:16:35.238555: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudnn.so.7 | |
2020-06-12 13:16:35.238639: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:981] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero | |
2020-06-12 13:16:35.239366: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:981] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero | |
2020-06-12 13:16:35.240021: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1703] Adding visible gpu devices: 0 | |
2020-06-12 13:16:35.240056: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudart.so.10.1 | |
2020-06-12 13:16:35.338437: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1102] Device interconnect StreamExecutor with strength 1 edge matrix: | |
2020-06-12 13:16:35.338462: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1108] 0 | |
2020-06-12 13:16:35.338468: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1121] 0: N | |
2020-06-12 13:16:35.338667: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:981] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero | |
2020-06-12 13:16:35.339274: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:981] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero | |
2020-06-12 13:16:35.339849: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:981] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero | |
2020-06-12 13:16:35.340362: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1247] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 10202 MB memory) -> physical GPU (device: 0, name: GeForce RTX 2080 Ti, pci bus id: 0000:01:00.0, compute capability: 7.5) | |
2020-06-12 13:16:35.341869: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x560b24c7d2b0 initialized for platform CUDA (this does not guarantee that XLA will be used). Devices: | |
2020-06-12 13:16:35.341882: I tensorflow/compiler/xla/service/service.cc:176] StreamExecutor device (0): GeForce RTX 2080 Ti, Compute Capability 7.5 | |
2020-06-12 13:16:35.877674: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcublas.so.10 | |
06/12/2020 13:16:36 - INFO - transformers.modeling_tf_utils - Layers of TFBertForSequenceClassification not initialized from pretrained model: ['classifier', 'dropout_37'] | |
06/12/2020 13:16:36 - INFO - transformers.modeling_tf_utils - Layers from pretrained model not used in TFBertForSequenceClassification: ['nsp___cls', 'mlm___cls'] | |
06/12/2020 13:16:36 - INFO - absl - Load dataset info from /home/boris/tensorflow_datasets/glue/mrpc/1.0.0 | |
06/12/2020 13:16:36 - INFO - absl - Reusing dataset glue (/home/boris/tensorflow_datasets/glue/mrpc/1.0.0) | |
06/12/2020 13:16:36 - INFO - absl - Constructing tf.data.Dataset for split train, from /home/boris/tensorflow_datasets/glue/mrpc/1.0.0 | |
06/12/2020 13:16:37 - INFO - transformers.data.processors.glue - Using label list ['0', '1'] for task mrpc | |
06/12/2020 13:16:37 - INFO - transformers.data.processors.glue - Using output mode classification for task mrpc | |
06/12/2020 13:16:38 - INFO - transformers.data.processors.glue - *** Example *** | |
06/12/2020 13:16:38 - INFO - transformers.data.processors.glue - guid: 1680 | |
06/12/2020 13:16:38 - INFO - transformers.data.processors.glue - features: InputFeatures(input_ids=[101, 1109, 6742, 187, 24985, 1209, 2496, 1112, 24628, 25166, 1116, 117, 6205, 1111, 2554, 1104, 1763, 1447, 119, 102, 1109, 187, 24985, 2496, 1112, 24628, 25166, 1116, 117, 2232, 1113, 1565, 8089, 119, 102, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], attention_mask=[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], token_type_ids=[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], label=0) | |
06/12/2020 13:16:38 - INFO - transformers.data.processors.glue - *** Example *** | |
06/12/2020 13:16:38 - INFO - transformers.data.processors.glue - guid: 1456 | |
06/12/2020 13:16:38 - INFO - transformers.data.processors.glue - features: InputFeatures(input_ids=[101, 13568, 1190, 1406, 3029, 1104, 25941, 112, 188, 3813, 1156, 1435, 1121, 1543, 17306, 1105, 2526, 1170, 1103, 3060, 2107, 7897, 4779, 1110, 2063, 119, 102, 13568, 1190, 1406, 3029, 1104, 25941, 112, 188, 3813, 1156, 1435, 1121, 1543, 17306, 1105, 2526, 1170, 1103, 3060, 2107, 7897, 4779, 1110, 2335, 117, 11577, 1343, 5028, 4597, 112, 189, 1962, 119, 102, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], attention_mask=[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], token_type_ids=[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], label=0) | |
06/12/2020 13:16:38 - INFO - transformers.data.processors.glue - *** Example *** | |
06/12/2020 13:16:38 - INFO - transformers.data.processors.glue - guid: 3017 | |
06/12/2020 13:16:38 - INFO - transformers.data.processors.glue - features: InputFeatures(input_ids=[101, 8454, 118, 2268, 14779, 109, 12620, 119, 128, 1550, 1107, 1157, 1963, 1314, 1214, 1105, 1355, 1113, 1106, 4821, 109, 1969, 1495, 119, 128, 1550, 119, 102, 8454, 118, 2268, 117, 6317, 153, 2349, 118, 1492, 117, 14779, 109, 12620, 119, 128, 1550, 1107, 1157, 1148, 5138, 1105, 1355, 1113, 1106, 1321, 1107, 109, 1969, 1495, 119, 128, 1550, 119, 102, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], attention_mask=[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], token_type_ids=[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], label=1) | |
06/12/2020 13:16:38 - INFO - transformers.data.processors.glue - *** Example *** | |
06/12/2020 13:16:38 - INFO - transformers.data.processors.glue - guid: 2896 | |
06/12/2020 13:16:38 - INFO - transformers.data.processors.glue - features: InputFeatures(input_ids=[101, 1109, 1617, 1248, 3861, 2686, 1274, 112, 189, 1511, 3736, 1121, 1412, 2053, 1120, 3291, 8223, 22540, 119, 102, 1109, 1214, 118, 2403, 2849, 1202, 1136, 1511, 3736, 1121, 3291, 8223, 22540, 6701, 119, 102, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], attention_mask=[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], token_type_ids=[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], label=1) | |
06/12/2020 13:16:38 - INFO - transformers.data.processors.glue - *** Example *** | |
06/12/2020 13:16:38 - INFO - transformers.data.processors.glue - guid: 499 | |
06/12/2020 13:16:38 - INFO - transformers.data.processors.glue - features: InputFeatures(input_ids=[101, 8848, 126, 119, 126, 1110, 1907, 2786, 1107, 1103, 1244, 1311, 1105, 1803, 117, 1111, 170, 2547, 3945, 1104, 1164, 109, 1367, 117, 5689, 119, 102, 8848, 126, 119, 126, 1110, 1208, 1907, 1107, 1103, 158, 119, 156, 119, 1105, 1803, 1194, 6998, 3518, 20470, 1231, 25421, 1116, 119, 102, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], attention_mask=[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], token_type_ids=[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], label=0) | |
06/12/2020 13:16:38 - INFO - absl - Load dataset info from /home/boris/tensorflow_datasets/glue/mrpc/1.0.0 | |
06/12/2020 13:16:38 - INFO - absl - Reusing dataset glue (/home/boris/tensorflow_datasets/glue/mrpc/1.0.0) | |
06/12/2020 13:16:38 - INFO - absl - Constructing tf.data.Dataset for split validation, from /home/boris/tensorflow_datasets/glue/mrpc/1.0.0 | |
06/12/2020 13:16:38 - INFO - transformers.data.processors.glue - Using label list ['0', '1'] for task mrpc | |
06/12/2020 13:16:38 - INFO - transformers.data.processors.glue - Using output mode classification for task mrpc | |
06/12/2020 13:16:39 - INFO - transformers.data.processors.glue - *** Example *** | |
06/12/2020 13:16:39 - INFO - transformers.data.processors.glue - guid: 3155 | |
06/12/2020 13:16:39 - INFO - transformers.data.processors.glue - features: InputFeatures(input_ids=[101, 1109, 1437, 112, 188, 8354, 4634, 1503, 118, 3861, 18155, 1679, 2934, 1118, 170, 24585, 119, 102, 1109, 1419, 1163, 1142, 20968, 18155, 1118, 170, 24585, 170, 2934, 119, 102, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], attention_mask=[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], token_type_ids=[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], label=1) | |
06/12/2020 13:16:39 - INFO - transformers.data.processors.glue - *** Example *** | |
06/12/2020 13:16:39 - INFO - transformers.data.processors.glue - guid: 2472 | |
06/12/2020 13:16:39 - INFO - transformers.data.processors.glue - features: InputFeatures(input_ids=[101, 12008, 14791, 20452, 10652, 6005, 117, 3614, 117, 9315, 1103, 7791, 1120, 1103, 9720, 2410, 1298, 16358, 20080, 4396, 1187, 1131, 1144, 1151, 1690, 1111, 1317, 1201, 117, 1163, 1123, 1401, 117, 3162, 20452, 8265, 18078, 119, 102, 1109, 7159, 1108, 2856, 9031, 1121, 12008, 14791, 20452, 10652, 6005, 117, 3614, 117, 1120, 1103, 9720, 2410, 118, 1298, 16358, 20080, 4396, 1187, 1131, 1144, 2077, 1111, 1317, 1201, 119, 102, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], attention_mask=[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], token_type_ids=[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], label=1) | |
06/12/2020 13:16:39 - INFO - transformers.data.processors.glue - *** Example *** | |
06/12/2020 13:16:39 - INFO - transformers.data.processors.glue - guid: 3584 | |
06/12/2020 13:16:39 - INFO - transformers.data.processors.glue - features: InputFeatures(input_ids=[101, 1109, 2025, 117, 1502, 6356, 1107, 1103, 4897, 22175, 15240, 2713, 117, 1110, 2620, 1106, 1145, 6058, 1106, 3612, 117, 1157, 5752, 1163, 119, 102, 1109, 2025, 117, 3303, 1113, 1103, 16570, 1104, 4297, 14105, 117, 1108, 1217, 1502, 2052, 1107, 1103, 4897, 22175, 15240, 2713, 119, 102, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], attention_mask=[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], token_type_ids=[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], label=0) | |
06/12/2020 13:16:39 - INFO - transformers.data.processors.glue - *** Example *** | |
06/12/2020 13:16:39 - INFO - transformers.data.processors.glue - guid: 3523 | |
06/12/2020 13:16:39 - INFO - transformers.data.processors.glue - features: InputFeatures(input_ids=[101, 1135, 1145, 3272, 170, 1434, 118, 1107, 151, 14962, 2137, 6746, 10909, 6829, 1200, 1177, 1115, 1344, 118, 3476, 151, 14962, 2137, 6746, 2962, 1169, 1129, 1215, 1443, 1515, 1106, 17812, 1126, 2509, 1619, 11451, 119, 102, 1109, 156, 1495, 1658, 19598, 12882, 1144, 170, 1434, 118, 1107, 151, 14962, 2137, 6746, 10909, 6829, 1200, 117, 1111, 1859, 117, 1177, 1115, 1344, 118, 3476, 151, 14962, 2137, 6746, 2962, 1169, 1129, 4631, 1443, 1126, 2509, 1619, 11451, 119, 102, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], attention_mask=[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], token_type_ids=[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], label=1) | |
06/12/2020 13:16:39 - INFO - transformers.data.processors.glue - *** Example *** | |
06/12/2020 13:16:39 - INFO - transformers.data.processors.glue - guid: 1782 | |
06/12/2020 13:16:39 - INFO - transformers.data.processors.glue - features: InputFeatures(input_ids=[101, 1987, 2392, 150, 1665, 1658, 21649, 117, 4947, 112, 188, 1266, 3995, 117, 1163, 1191, 1103, 3850, 1125, 1151, 8318, 2206, 4947, 1156, 1138, 5366, 1167, 1104, 1117, 3575, 4226, 119, 102, 1987, 2392, 150, 1665, 1658, 21649, 117, 1103, 1266, 112, 188, 15175, 117, 1163, 1125, 1103, 3850, 1151, 8318, 1106, 4947, 2206, 117, 1119, 1156, 1138, 5366, 1167, 1104, 1117, 3575, 3053, 119, 102, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], attention_mask=[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], token_type_ids=[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], label=1) | |
06/12/2020 13:16:39 - INFO - transformers.trainer_tf - ***** Running training ***** | |
06/12/2020 13:16:39 - INFO - transformers.trainer_tf - Num examples = 3668 | |
06/12/2020 13:16:39 - INFO - transformers.trainer_tf - Num Epochs = 3 | |
06/12/2020 13:16:39 - INFO - transformers.trainer_tf - Total optimization steps = 115 | |
WARNING:tensorflow:From /home/boris/Projects/temp/transformers/src/transformers/trainer_tf.py:355: StrategyBase.experimental_run_v2 (from tensorflow.python.distribute.distribute_lib) is deprecated and will be removed in a future version. | |
Instructions for updating: | |
renamed to `run` | |
06/12/2020 13:16:40 - WARNING - tensorflow - From /home/boris/Projects/temp/transformers/src/transformers/trainer_tf.py:355: StrategyBase.experimental_run_v2 (from tensorflow.python.distribute.distribute_lib) is deprecated and will be removed in a future version. | |
Instructions for updating: | |
renamed to `run` | |
WARNING:tensorflow:From /home/boris/miniconda3/envs/tf/lib/python3.8/site-packages/tensorflow/python/ops/resource_variable_ops.py:1813: calling BaseResourceVariable.__init__ (from tensorflow.python.ops.resource_variable_ops) with constraint is deprecated and will be removed in a future version. | |
Instructions for updating: | |
If using Keras pass *_constraint arguments to layers. | |
06/12/2020 13:16:45 - WARNING - tensorflow - From /home/boris/miniconda3/envs/tf/lib/python3.8/site-packages/tensorflow/python/ops/resource_variable_ops.py:1813: calling BaseResourceVariable.__init__ (from tensorflow.python.ops.resource_variable_ops) with constraint is deprecated and will be removed in a future version. | |
Instructions for updating: | |
If using Keras pass *_constraint arguments to layers. | |
/home/boris/miniconda3/envs/tf/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:433: UserWarning: Converting sparse IndexedSlices to a dense Tensor of unknown shape. This may consume a large amount of memory. | |
warnings.warn( | |
06/12/2020 13:17:19 - INFO - transformers.trainer_tf - Epoch 1 Step 10 Train Loss 0.6540 | |
06/12/2020 13:17:22 - INFO - transformers.trainer_tf - Epoch 1 Step 20 Train Loss 0.5929 | |
06/12/2020 13:17:25 - INFO - transformers.trainer_tf - Epoch 1 Step 30 Train Loss 0.5432 | |
06/12/2020 13:17:28 - INFO - transformers.trainer_tf - Epoch 1 Step 40 Train Loss 0.5231 | |
06/12/2020 13:17:31 - INFO - transformers.trainer_tf - ***** Running Evaluation ***** | |
06/12/2020 13:17:31 - INFO - transformers.trainer_tf - Batch size = 8 | |
06/12/2020 13:17:34 - INFO - transformers.trainer_tf - Epoch 1 Step 50 Validation Metrics {'eval_eval_loss': 0.45943707, 'eval_eval_acc': 0.7132352941176471, 'eval_eval_f1': 0.8245877061469266, 'eval_eval_acc_and_f1': 0.7689115001322868, 'learning_rate': 1.1304346e-05} | |
06/12/2020 13:17:34 - INFO - transformers.trainer_tf - Epoch 1 Step 50 Train Loss 0.5019 | |
06/12/2020 13:17:38 - INFO - transformers.trainer_tf - Epoch 1 Step 60 Train Loss 0.5071 | |
06/12/2020 13:17:41 - INFO - transformers.trainer_tf - Epoch 1 Step 70 Train Loss 0.5175 | |
06/12/2020 13:17:44 - INFO - transformers.trainer_tf - Epoch 1 Step 80 Train Loss 0.5219 | |
06/12/2020 13:17:47 - INFO - transformers.trainer_tf - Epoch 1 Step 90 Train Loss 0.5415 | |
06/12/2020 13:17:51 - INFO - transformers.trainer_tf - ***** Running Evaluation ***** | |
06/12/2020 13:17:51 - INFO - transformers.trainer_tf - Batch size = 8 | |
06/12/2020 13:17:52 - INFO - transformers.trainer_tf - Epoch 1 Step 100 Validation Metrics {'eval_eval_loss': 0.47651273, 'eval_eval_acc': 0.7671568627450981, 'eval_eval_f1': 0.8470209339774558, 'eval_eval_acc_and_f1': 0.807088898361277, 'learning_rate': 2.6086961e-06} | |
06/12/2020 13:17:52 - INFO - transformers.trainer_tf - Epoch 1 Step 100 Train Loss 0.4664 | |
06/12/2020 13:17:55 - INFO - transformers.trainer_tf - Epoch 1 Step 110 Train Loss 0.5018 | |
06/12/2020 13:18:07 - INFO - transformers.trainer_tf - Epoch 2 Step 120 Train Loss 0.5442 | |
06/12/2020 13:18:11 - INFO - transformers.trainer_tf - Epoch 2 Step 130 Train Loss 0.4833 | |
06/12/2020 13:18:14 - INFO - transformers.trainer_tf - Epoch 2 Step 140 Train Loss 0.5221 | |
06/12/2020 13:18:17 - INFO - transformers.trainer_tf - ***** Running Evaluation ***** | |
06/12/2020 13:18:17 - INFO - transformers.trainer_tf - Batch size = 8 | |
06/12/2020 13:18:19 - INFO - transformers.trainer_tf - Epoch 2 Step 150 Validation Metrics {'eval_eval_loss': 0.45965827, 'eval_eval_acc': 0.7671568627450981, 'eval_eval_f1': 0.8484848484848485, 'eval_eval_acc_and_f1': 0.8078208556149733, 'learning_rate': 0.0} | |
06/12/2020 13:18:19 - INFO - transformers.trainer_tf - Epoch 2 Step 150 Train Loss 0.4236 | |
06/12/2020 13:18:22 - INFO - transformers.trainer_tf - Epoch 2 Step 160 Train Loss 0.6103 | |
06/12/2020 13:18:25 - INFO - transformers.trainer_tf - Epoch 2 Step 170 Train Loss 0.4055 | |
06/12/2020 13:18:28 - INFO - transformers.trainer_tf - Epoch 2 Step 180 Train Loss 0.4773 | |
06/12/2020 13:18:32 - INFO - transformers.trainer_tf - Epoch 2 Step 190 Train Loss 0.6860 | |
06/12/2020 13:18:35 - INFO - transformers.trainer_tf - ***** Running Evaluation ***** | |
06/12/2020 13:18:35 - INFO - transformers.trainer_tf - Batch size = 8 | |
06/12/2020 13:18:36 - INFO - transformers.trainer_tf - Epoch 2 Step 200 Validation Metrics {'eval_eval_loss': 0.4596582, 'eval_eval_acc': 0.7671568627450981, 'eval_eval_f1': 0.8484848484848485, 'eval_eval_acc_and_f1': 0.8078208556149733, 'learning_rate': 0.0} | |
06/12/2020 13:18:36 - INFO - transformers.trainer_tf - Epoch 2 Step 200 Train Loss 0.4985 | |
06/12/2020 13:18:40 - INFO - transformers.trainer_tf - Epoch 2 Step 210 Train Loss 0.5482 | |
06/12/2020 13:18:43 - INFO - transformers.trainer_tf - Epoch 2 Step 220 Train Loss 0.5836 | |
06/12/2020 13:18:46 - INFO - transformers.trainer_tf - Epoch 2 Step 230 Train Loss 0.3954 | |
06/12/2020 13:18:59 - INFO - transformers.trainer_tf - Epoch 3 Step 240 Train Loss 0.5232 | |
06/12/2020 13:19:02 - INFO - transformers.trainer_tf - ***** Running Evaluation ***** | |
06/12/2020 13:19:02 - INFO - transformers.trainer_tf - Batch size = 8 | |
06/12/2020 13:19:03 - INFO - transformers.trainer_tf - Epoch 3 Step 250 Validation Metrics {'eval_eval_loss': 0.4596582, 'eval_eval_acc': 0.7671568627450981, 'eval_eval_f1': 0.8484848484848485, 'eval_eval_acc_and_f1': 0.8078208556149733, 'learning_rate': 0.0} | |
06/12/2020 13:19:03 - INFO - transformers.trainer_tf - Epoch 3 Step 250 Train Loss 0.4859 | |
06/12/2020 13:19:06 - INFO - transformers.trainer_tf - Epoch 3 Step 260 Train Loss 0.5354 | |
06/12/2020 13:19:10 - INFO - transformers.trainer_tf - Epoch 3 Step 270 Train Loss 0.5821 | |
06/12/2020 13:19:13 - INFO - transformers.trainer_tf - Epoch 3 Step 280 Train Loss 0.5463 | |
06/12/2020 13:19:16 - INFO - transformers.trainer_tf - Epoch 3 Step 290 Train Loss 0.3933 | |
06/12/2020 13:19:20 - INFO - transformers.trainer_tf - ***** Running Evaluation ***** | |
06/12/2020 13:19:20 - INFO - transformers.trainer_tf - Batch size = 8 | |
06/12/2020 13:19:21 - INFO - transformers.trainer_tf - Epoch 3 Step 300 Validation Metrics {'eval_eval_loss': 0.4596582, 'eval_eval_acc': 0.7671568627450981, 'eval_eval_f1': 0.8484848484848485, 'eval_eval_acc_and_f1': 0.8078208556149733, 'learning_rate': 0.0} | |
06/12/2020 13:19:21 - INFO - transformers.trainer_tf - Epoch 3 Step 300 Train Loss 0.5546 | |
06/12/2020 13:19:24 - INFO - transformers.trainer_tf - Epoch 3 Step 310 Train Loss 0.5301 | |
06/12/2020 13:19:28 - INFO - transformers.trainer_tf - Epoch 3 Step 320 Train Loss 0.5231 | |
06/12/2020 13:19:31 - INFO - transformers.trainer_tf - Epoch 3 Step 330 Train Loss 0.5541 | |
06/12/2020 13:19:34 - INFO - transformers.trainer_tf - Epoch 3 Step 340 Train Loss 0.4751 | |
06/12/2020 13:19:36 - INFO - transformers.trainer_tf - Saving model in /tmp/MRPC/ | |
06/12/2020 13:19:36 - INFO - transformers.configuration_utils - Configuration saved in /tmp/MRPC/config.json | |
06/12/2020 13:19:37 - INFO - transformers.modeling_tf_utils - Model weights saved in /tmp/MRPC/tf_model.h5 | |
06/12/2020 13:19:37 - INFO - __main__ - *** Evaluate *** | |
06/12/2020 13:19:37 - INFO - transformers.trainer_tf - ***** Running Evaluation ***** | |
06/12/2020 13:19:37 - INFO - transformers.trainer_tf - Batch size = 8 | |
06/12/2020 13:19:39 - INFO - __main__ - ***** Eval results ***** | |
06/12/2020 13:19:39 - INFO - __main__ - eval_loss = 0.45965827 | |
06/12/2020 13:19:39 - INFO - __main__ - eval_acc = 0.7671568627450981 | |
06/12/2020 13:19:39 - INFO - __main__ - eval_f1 = 0.8484848484848485 | |
06/12/2020 13:19:39 - INFO - __main__ - eval_acc_and_f1 = 0.8078208556149733 | |
``` |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment