Created
December 1, 2018 09:15
-
-
Save botamochi6277/7bfc4e15443cfbaa3ab9882f6a953868 to your computer and use it in GitHub Desktop.
Dual MPU9250 libraries for M5stack
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
/** | |
* MPU9250 Basic Example Code for Dual MPU9250 | |
* Copyright (c) 2014 Kris Winer | |
* Copyright (c) 2018 botamochi6277 | |
* license: Beerware - Use this code however you'd like. If you | |
* find it useful you can buy me a beer some time. | |
*/ | |
#include <M5Stack.h> | |
#include "utility/MPU9250.h" | |
#include "utility/quaternionFilters.h" | |
#define processing_out false | |
// AHRS: Attitude Heading Reference System(姿勢推定) | |
// ref: https://myenigma.hatenablog.com/entry/2015/11/09/183738 | |
#define AHRS false // Set to false for basic data read | |
// #define SerialDebug true // Set to true to get Serial output for debugging | |
#define LCD | |
MPU9250 imu0;// 0x68 | |
MPU9250 imu1;// 0x69 | |
// Kalman kalmanX, kalmanY, kalmanZ; // Create the Kalman instances | |
void setup() { | |
M5.begin(); | |
Wire.begin(); | |
imu1.setAddress(0x69); | |
// IMU | |
if (!imu0.init()) { | |
// ERROR | |
M5.Lcd.setTextSize(1); | |
M5.Lcd.setTextColor(RED , BLACK); | |
M5.Lcd.fillScreen(BLACK); // clears the screen and buffer | |
M5.Lcd.setCursor(0, 10); | |
M5.Lcd.print("Could not connect to MPU9250 in M5Stack"); | |
while (1); | |
} | |
if (!imu1.init()) { | |
// ERROR | |
M5.Lcd.setTextSize(1); | |
M5.Lcd.setTextColor(RED , BLACK); | |
M5.Lcd.fillScreen(BLACK); // clears the screen and buffer | |
M5.Lcd.setCursor(0, 10); | |
M5.Lcd.print("Could not connect to MPU9250 in GROVE module"); | |
while (1); | |
} | |
M5.Lcd.setTextSize(1); | |
M5.Lcd.setTextColor(GREEN , BLACK); | |
M5.Lcd.fillScreen(BLACK); | |
} | |
void loop() { | |
imu0.update(false); | |
imu1.update(false); | |
if (!AHRS) { | |
imu0.delt_t = millis() - imu0.count; | |
if (imu0.delt_t > 500) { | |
#ifdef LCD | |
M5.Lcd.setTextSize(1); | |
M5.Lcd.fillScreen(BLACK); | |
M5.Lcd.setTextColor(GREEN , BLACK); | |
M5.Lcd.setCursor(0, 0); M5.Lcd.print("MPU9250"); | |
M5.Lcd.setCursor(0, 20); M5.Lcd.print("0x68"); | |
M5.Lcd.setCursor(0, 32); M5.Lcd.print(" x y z "); | |
M5.Lcd.setCursor(0, 48); M5.Lcd.print((int)(1000 * imu0.ax)); | |
M5.Lcd.setCursor(32, 48); M5.Lcd.print((int)(1000 * imu0.ay)); | |
M5.Lcd.setCursor(64, 48); M5.Lcd.print((int)(1000 * imu0.az)); | |
M5.Lcd.setCursor(96, 48); M5.Lcd.print("mg"); | |
M5.Lcd.setCursor(0, 64); M5.Lcd.print((int)(imu0.gx)); | |
M5.Lcd.setCursor(32, 64); M5.Lcd.print((int)(imu0.gy)); | |
M5.Lcd.setCursor(64, 64); M5.Lcd.print((int)(imu0.gz)); | |
M5.Lcd.setCursor(96, 64); M5.Lcd.print("o/s"); | |
// M5.Lcd.setCursor(0, 96); M5.Lcd.print((int)(imu0.mx)); | |
// M5.Lcd.setCursor(32, 96); M5.Lcd.print((int)(imu0.my)); | |
// M5.Lcd.setCursor(64, 96); M5.Lcd.print((int)(imu0.mz)); | |
// M5.Lcd.setCursor(96, 96); M5.Lcd.print("mG"); | |
M5.Lcd.setCursor(0, 20 + 80); M5.Lcd.print("0x68"); | |
M5.Lcd.setCursor(0, 32 + 80); M5.Lcd.print(" x y z "); | |
M5.Lcd.setCursor(0, 48 + 80); M5.Lcd.print((int)(1000 * imu1.ax)); | |
M5.Lcd.setCursor(32, 48 + 80); M5.Lcd.print((int)(1000 * imu1.ay)); | |
M5.Lcd.setCursor(64, 48 + 80); M5.Lcd.print((int)(1000 * imu1.az)); | |
M5.Lcd.setCursor(96, 48 + 80); M5.Lcd.print("mg"); | |
M5.Lcd.setCursor(0, 64 + 80); M5.Lcd.print((int)(imu1.gx)); | |
M5.Lcd.setCursor(32, 64 + 80); M5.Lcd.print((int)(imu1.gy)); | |
M5.Lcd.setCursor(64, 64 + 80); M5.Lcd.print((int)(imu1.gz)); | |
M5.Lcd.setCursor(96, 64 + 80); M5.Lcd.print("o/s"); | |
M5.Lcd.setCursor(0, 80 + 80); M5.Lcd.print("Gyro T "); | |
#endif // LCD | |
imu0.count = millis(); | |
// digitalWrite(myLed, !digitalRead(myLed)); // toggle led | |
} // end of if (IMU.delt_t > 500) | |
} | |
// strike/shock/impact detection | |
if (imu0.isStrike()) { | |
M5.Speaker.tone(1000, 100); | |
} else { | |
M5.Speaker.mute(); | |
} | |
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#include "MPU9250.h" | |
#include "quaternionFilters.h" | |
//============================================================================== | |
//====== Set of useful function to access acceleration. gyroscope, magnetometer, | |
//====== and temperature data | |
//============================================================================== | |
MPU9250::MPU9250() { | |
MPU9250_address_ = 0x68; | |
AK8963_address_ = 0x0C; | |
// Specify sensor full scale | |
Gscale = GFS_250DPS; | |
Ascale = AFS_2G; | |
threshold_ = 1.8; | |
// Choose either 14-bit or 16-bit magnetometer resolution | |
Mscale = MFS_16BITS; | |
// 2 for 8 Hz, 6 for 100 Hz continuous magnetometer data read | |
Mmode = 0x02; | |
} | |
void MPU9250::setAddress(uint8_t MPU9250_address, | |
uint8_t AK8963_address) { | |
MPU9250_address_ = MPU9250_address;// 0x68 or 0x69s | |
AK8963_address_ = AK8963_address; | |
} | |
uint8_t MPU9250::address(bool is_inertia) { | |
if (is_inertia) { | |
return MPU9250_address_; | |
} else { | |
return AK8963_address_; | |
} | |
} | |
void MPU9250::update(bool is_mag) { | |
// If intPin goes high, all data registers have new data | |
// On interrupt, check if data ready interrupt | |
if (readByte(MPU9250_address_, INT_STATUS) & 0x01) { | |
readAccelData(accelCount); // Read the x/y/z adc values | |
getAres(); | |
// Now we'll calculate the accleration value into actual g's | |
// This depends on scale being set | |
ax = (float)accelCount[0] * aRes; // - accelBias[0]; | |
ay = (float)accelCount[1] * aRes; // - accelBias[1]; | |
az = (float)accelCount[2] * aRes; // - accelBias[2]; | |
readGyroData(gyroCount); // Read the x/y/z adc values | |
getGres(); | |
// Calculate the gyro value into actual degrees per second | |
// This depends on scale being set | |
gx = (float)gyroCount[0] * gRes; | |
gy = (float)gyroCount[1] * gRes; | |
gz = (float)gyroCount[2] * gRes; | |
// update magnetic values | |
if (is_mag) { | |
readMagData(magCount); // Read the x/y/z adc values | |
getMres(); | |
// User environmental x-axis correction in milliGauss, should be | |
// automatically calculated | |
magbias[0] = + 470.; | |
// User environmental x-axis correction in milliGauss TODO axis?? | |
magbias[1] = + 120.; | |
// User environmental x-axis correction in milliGauss | |
magbias[2] = + 125.; | |
// Calculate the magnetometer values in milliGauss | |
// Include factory calibration per data sheet and user environmental | |
// corrections | |
// Get actual magnetometer value, this depends on scale being set | |
mx = (float)magCount[0] * mRes * magCalibration[0] - | |
magbias[0]; | |
my = (float)magCount[1] * mRes * magCalibration[1] - | |
magbias[1]; | |
mz = (float)magCount[2] * mRes * magCalibration[2] - | |
magbias[2]; | |
} | |
} // end of if (readByte(MPU9250_address_, INT_STATUS) & 0x01) | |
// Must be called before updating quaternions! | |
updateTime(); | |
// Sensors x (y)-axis of the accelerometer is aligned with the y (x)-axis of | |
// the magnetometer; the magnetometer z-axis (+ down) is opposite to z-axis | |
// (+ up) of accelerometer and gyro! We have to make some allowance for this | |
// orientationmismatch in feeding the output to the quaternion filter. For the | |
// MPU-9250, we have chosen a magnetic rotation that keeps the sensor forward | |
// along the x-axis just like in the LSM9DS0 sensor. This rotation can be | |
// modified to allow any convenient orientation convention. This is ok by | |
// aircraft orientation standards! Pass gyro rate as rad/s | |
// MadgwickQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f, my, mx, mz); | |
MahonyQuaternionUpdate(ax, ay, az, gx * DEG_TO_RAD, | |
gy * DEG_TO_RAD, gz * DEG_TO_RAD, my, | |
mx, mz, deltat); | |
} | |
void MPU9250::setRange(uint8_t a_scale, uint8_t g_scale) { | |
switch (a_scale) { | |
// Possible accelerometer scales (and their register bit settings) are: | |
// 2 Gs (00), 4 Gs (01), 8 Gs (10), and 16 Gs (11). | |
case 2: | |
Ascale = AFS_2G; | |
threshold_ = a_scale * 0.9; | |
break; | |
case 4: | |
Ascale = AFS_4G; | |
threshold_ = a_scale * 0.9; | |
break; | |
case 8: | |
Ascale = AFS_8G; | |
threshold_ = a_scale * 0.9; | |
break; | |
case 16: | |
Ascale = AFS_16G; | |
threshold_ = a_scale * 0.9; | |
break; | |
default : | |
Ascale = AFS_2G; | |
break; | |
} | |
switch (g_scale) { | |
// Possible gyro scales (and their register bit settings) are: | |
// 250 DPS (00), 500 DPS (01), 1000 DPS (10), and 2000 DPS (11). | |
// Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value: | |
case 250: | |
Gscale = GFS_250DPS; | |
break; | |
case 500: | |
Gscale = GFS_500DPS; | |
break; | |
case 1000: | |
Gscale = GFS_1000DPS; | |
break; | |
case 2000: | |
Gscale = GFS_2000DPS; | |
break; | |
default : | |
Gscale = GFS_250DPS; | |
break; | |
} | |
} | |
bool MPU9250::isStrike() { | |
if ( (abs(ax) > threshold_) || | |
(abs(ay) > threshold_) || | |
(abs(az) > threshold_)) { | |
return true; | |
} else { | |
return false; | |
} | |
} | |
bool MPU9250::init() { | |
char c = readByte(MPU9250_address_, WHO_AM_I_MPU9250); | |
// MPU9250: 0x71 | |
// MPU9255: 0x73 | |
// WHO_AM_I should always be 0x68 | |
if (c == 0x71 || c == 0x73) { | |
// Start by performing self test and reporting values | |
MPU9250SelfTest(SelfTest); | |
// Calibrate gyro and accelerometers, load biases in bias registers | |
calibrateMPU9250(gyroBias, accelBias); | |
initMPU9250(); | |
return true; | |
} else { | |
return false; | |
} | |
} | |
void MPU9250::getMres() { | |
switch (Mscale) { | |
// Possible magnetometer scales (and their register bit settings) are: | |
// 14 bit resolution (0) and 16 bit resolution (1) | |
case MFS_14BITS: | |
mRes = 10.*4912. / 8190.; // Proper scale to return milliGauss | |
break; | |
case MFS_16BITS: | |
mRes = 10.*4912. / 32760.0; // Proper scale to return milliGauss | |
break; | |
} | |
} | |
void MPU9250::getGres() { | |
switch (Gscale) { | |
// Possible gyro scales (and their register bit settings) are: | |
// 250 DPS (00), 500 DPS (01), 1000 DPS (10), and 2000 DPS (11). | |
// Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value: | |
case GFS_250DPS: | |
gRes = 250.0 / 32768.0; | |
break; | |
case GFS_500DPS: | |
gRes = 500.0 / 32768.0; | |
break; | |
case GFS_1000DPS: | |
gRes = 1000.0 / 32768.0; | |
break; | |
case GFS_2000DPS: | |
gRes = 2000.0 / 32768.0; | |
break; | |
} | |
} | |
void MPU9250::getAres() { | |
switch (Ascale) { | |
// Possible accelerometer scales (and their register bit settings) are: | |
// 2 Gs (00), 4 Gs (01), 8 Gs (10), and 16 Gs (11). | |
// Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value: | |
case AFS_2G: | |
aRes = 2.0 / 32768.0; | |
break; | |
case AFS_4G: | |
aRes = 4.0 / 32768.0; | |
break; | |
case AFS_8G: | |
aRes = 8.0 / 32768.0; | |
break; | |
case AFS_16G: | |
aRes = 16.0 / 32768.0; | |
break; | |
} | |
} | |
void MPU9250::readAccelData(int16_t * destination) { | |
uint8_t rawData[6]; // x/y/z accel register data stored here | |
readBytes(MPU9250_address_, ACCEL_XOUT_H, 6, &rawData[0]); // Read the six raw data registers into data array | |
destination[0] = ((int16_t)rawData[0] << 8) | rawData[1] ; // Turn the MSB and LSB into a signed 16-bit value | |
destination[1] = ((int16_t)rawData[2] << 8) | rawData[3] ; | |
destination[2] = ((int16_t)rawData[4] << 8) | rawData[5] ; | |
} | |
void MPU9250::readGyroData(int16_t * destination) { | |
uint8_t rawData[6]; // x/y/z gyro register data stored here | |
readBytes(MPU9250_address_, GYRO_XOUT_H, 6, &rawData[0]); // Read the six raw data registers sequentially into data array | |
destination[0] = ((int16_t)rawData[0] << 8) | rawData[1] ; // Turn the MSB and LSB into a signed 16-bit value | |
destination[1] = ((int16_t)rawData[2] << 8) | rawData[3] ; | |
destination[2] = ((int16_t)rawData[4] << 8) | rawData[5] ; | |
} | |
void MPU9250::readMagData(int16_t * destination) { | |
// x/y/z gyro register data, ST2 register stored here, must read ST2 at end of | |
// data acquisition | |
uint8_t rawData[7]; | |
// Wait for magnetometer data ready bit to be set | |
if (readByte(AK8963_address_, AK8963_ST1) & 0x01) { | |
// Read the six raw data and ST2 registers sequentially into data array | |
readBytes(AK8963_address_, AK8963_XOUT_L, 7, &rawData[0]); | |
uint8_t c = rawData[6]; // End data read by reading ST2 register | |
// Check if magnetic sensor overflow set, if not then report data | |
if (!(c & 0x08)) { | |
// Turn the MSB and LSB into a signed 16-bit value | |
destination[0] = ((int16_t)rawData[1] << 8) | rawData[0]; | |
// Data stored as little Endian | |
destination[1] = ((int16_t)rawData[3] << 8) | rawData[2]; | |
destination[2] = ((int16_t)rawData[5] << 8) | rawData[4]; | |
} | |
} | |
} | |
int16_t MPU9250::readTempData() { | |
uint8_t rawData[2]; // x/y/z gyro register data stored here | |
readBytes(MPU9250_address_, TEMP_OUT_H, 2, &rawData[0]); // Read the two raw data registers sequentially into data array | |
return ((int16_t)rawData[0] << 8) | rawData[1]; // Turn the MSB and LSB into a 16-bit value | |
} | |
// Calculate the time the last update took for use in the quaternion filters | |
void MPU9250::updateTime() { | |
Now = micros(); | |
// Set integration time by time elapsed since last filter update | |
deltat = ((Now - lastUpdate) / 1000000.0f); | |
lastUpdate = Now; | |
sum += deltat; // sum for averaging filter update rate | |
sumCount++; | |
} | |
void MPU9250::initAK8963(float * destination) { | |
// First extract the factory calibration for each magnetometer axis | |
uint8_t rawData[3]; // x/y/z gyro calibration data stored here | |
writeByte(AK8963_address_, AK8963_CNTL, 0x00); // Power down magnetometer | |
delay(10); | |
writeByte(AK8963_address_, AK8963_CNTL, 0x0F); // Enter Fuse ROM access mode | |
delay(10); | |
readBytes(AK8963_address_, AK8963_ASAX, 3, &rawData[0]); // Read the x-, y-, and z-axis calibration values | |
destination[0] = (float)(rawData[0] - 128) / 256. + 1.; // Return x-axis sensitivity adjustment values, etc. | |
destination[1] = (float)(rawData[1] - 128) / 256. + 1.; | |
destination[2] = (float)(rawData[2] - 128) / 256. + 1.; | |
writeByte(AK8963_address_, AK8963_CNTL, 0x00); // Power down magnetometer | |
delay(10); | |
// Configure the magnetometer for continuous read and highest resolution | |
// set Mscale bit 4 to 1 (0) to enable 16 (14) bit resolution in CNTL register, | |
// and enable continuous mode data acquisition Mmode (bits [3:0]), 0010 for 8 Hz and 0110 for 100 Hz sample rates | |
writeByte(AK8963_address_, AK8963_CNTL, Mscale << 4 | Mmode); // Set magnetometer data resolution and sample ODR | |
delay(10); | |
} | |
void MPU9250::initMPU9250() { | |
// wake up device | |
writeByte(MPU9250_address_, PWR_MGMT_1, 0x00); // Clear sleep mode bit (6), enable all sensors | |
delay(100); // Wait for all registers to reset | |
// get stable time source | |
writeByte(MPU9250_address_, PWR_MGMT_1, 0x01); // Auto select clock source to be PLL gyroscope reference if ready else | |
delay(200); | |
// Configure Gyro and Thermometer | |
// Disable FSYNC and set thermometer and gyro bandwidth to 41 and 42 Hz, respectively; | |
// minimum delay time for this setting is 5.9 ms, which means sensor fusion update rates cannot | |
// be higher than 1 / 0.0059 = 170 Hz | |
// DLPF_CFG = bits 2:0 = 011; this limits the sample rate to 1000 Hz for both | |
// With the MPU9250, it is possible to get gyro sample rates of 32 kHz (!), 8 kHz, or 1 kHz | |
writeByte(MPU9250_address_, CONFIG, 0x03); | |
// Set sample rate = gyroscope output rate/(1 + SMPLRT_DIV) | |
writeByte(MPU9250_address_, SMPLRT_DIV, 0x04); | |
// Use a 200 Hz rate; a rate consistent with the filter update rate | |
// determined inset in CONFIG above | |
// Set gyroscope full scale range | |
// Range selects FS_SEL and AFS_SEL are 0 - 3, so 2-bit values are left-shifted into positions 4:3 | |
uint8_t c = readByte(MPU9250_address_, GYRO_CONFIG); // get current GYRO_CONFIG register value | |
// c = c & ~0xE0; // Clear self-test bits [7:5] | |
c = c & ~0x02; // Clear Fchoice bits [1:0] | |
c = c & ~0x18; // Clear AFS bits [4:3] | |
c = c | Gscale << 3; // Set full scale range for the gyro | |
// c =| 0x00; // Set Fchoice for the gyro to 11 by writing its inverse to bits 1:0 of GYRO_CONFIG | |
writeByte(MPU9250_address_, GYRO_CONFIG, c ); // Write new GYRO_CONFIG value to register | |
// Set accelerometer full-scale range configuration | |
c = readByte(MPU9250_address_, ACCEL_CONFIG); // get current ACCEL_CONFIG register value | |
// c = c & ~0xE0; // Clear self-test bits [7:5] | |
c = c & ~0x18; // Clear AFS bits [4:3] | |
c = c | Ascale << 3; // Set full scale range for the accelerometer | |
writeByte(MPU9250_address_, ACCEL_CONFIG, c); // Write new ACCEL_CONFIG register value | |
// Set accelerometer sample rate configuration | |
// It is possible to get a 4 kHz sample rate from the accelerometer by choosing 1 for | |
// accel_fchoice_b bit [3]; in this case the bandwidth is 1.13 kHz | |
c = readByte(MPU9250_address_, ACCEL_CONFIG2); // get current ACCEL_CONFIG2 register value | |
c = c & ~0x0F; // Clear accel_fchoice_b (bit 3) and A_DLPFG (bits [2:0]) | |
c = c | 0x03; // Set accelerometer rate to 1 kHz and bandwidth to 41 Hz | |
writeByte(MPU9250_address_, ACCEL_CONFIG2, c); // Write new ACCEL_CONFIG2 register value | |
// The accelerometer, gyro, and thermometer are set to 1 kHz sample rates, | |
// but all these rates are further reduced by a factor of 5 to 200 Hz because of the SMPLRT_DIV setting | |
// Configure Interrupts and Bypass Enable | |
// Set interrupt pin active high, push-pull, hold interrupt pin level HIGH until interrupt cleared, | |
// clear on read of INT_STATUS, and enable I2C_BYPASS_EN so additional chips | |
// can join the I2C bus and all can be controlled by the Arduino as master | |
writeByte(MPU9250_address_, INT_PIN_CFG, 0x22); | |
writeByte(MPU9250_address_, INT_ENABLE, 0x01); // Enable data ready (bit 0) interrupt | |
delay(100); | |
} | |
// Function which accumulates gyro and accelerometer data after device | |
// initialization. It calculates the average of the at-rest readings and then | |
// loads the resulting offsets into accelerometer and gyro bias registers. | |
void MPU9250::calibrateMPU9250(float * gyroBias, float * accelBias) { | |
uint8_t data[12]; // data array to hold accelerometer and gyro x, y, z, data | |
uint16_t ii, packet_count, fifo_count; | |
int32_t gyro_bias[3] = {0, 0, 0}, accel_bias[3] = {0, 0, 0}; | |
// reset device | |
// Write a one to bit 7 reset bit; toggle reset device | |
writeByte(MPU9250_address_, PWR_MGMT_1, 0x80); | |
delay(100); | |
// get stable time source; Auto select clock source to be PLL gyroscope | |
// reference if ready else use the internal oscillator, bits 2:0 = 001 | |
writeByte(MPU9250_address_, PWR_MGMT_1, 0x01); | |
writeByte(MPU9250_address_, PWR_MGMT_2, 0x00); | |
delay(200); | |
// Configure device for bias calculation | |
writeByte(MPU9250_address_, INT_ENABLE, 0x00); // Disable all interrupts | |
writeByte(MPU9250_address_, FIFO_EN, 0x00); // Disable FIFO | |
writeByte(MPU9250_address_, PWR_MGMT_1, 0x00); // Turn on internal clock source | |
writeByte(MPU9250_address_, I2C_MST_CTRL, 0x00); // Disable I2C master | |
writeByte(MPU9250_address_, USER_CTRL, 0x00); // Disable FIFO and I2C master modes | |
writeByte(MPU9250_address_, USER_CTRL, 0x0C); // Reset FIFO and DMP | |
delay(15); | |
// Configure MPU6050 gyro and accelerometer for bias calculation | |
writeByte(MPU9250_address_, CONFIG, 0x01); // Set low-pass filter to 188 Hz | |
writeByte(MPU9250_address_, SMPLRT_DIV, 0x00); // Set sample rate to 1 kHz | |
writeByte(MPU9250_address_, GYRO_CONFIG, 0x00); // Set gyro full-scale to 250 degrees per second, maximum sensitivity | |
writeByte(MPU9250_address_, ACCEL_CONFIG, 0x00); // Set accelerometer full-scale to 2 g, maximum sensitivity | |
uint16_t gyrosensitivity = 131; // = 131 LSB/degrees/sec | |
uint16_t accelsensitivity = 16384; // = 16384 LSB/g | |
// Configure FIFO to capture accelerometer and gyro data for bias calculation | |
writeByte(MPU9250_address_, USER_CTRL, 0x40); // Enable FIFO | |
writeByte(MPU9250_address_, FIFO_EN, 0x78); // Enable gyro and accelerometer sensors for FIFO (max size 512 bytes in MPU-9150) | |
delay(40); // accumulate 40 samples in 40 milliseconds = 480 bytes | |
// At end of sample accumulation, turn off FIFO sensor read | |
writeByte(MPU9250_address_, FIFO_EN, 0x00); // Disable gyro and accelerometer sensors for FIFO | |
readBytes(MPU9250_address_, FIFO_COUNTH, 2, &data[0]); // read FIFO sample count | |
fifo_count = ((uint16_t)data[0] << 8) | data[1]; | |
packet_count = fifo_count / 12; // How many sets of full gyro and accelerometer data for averaging | |
for (ii = 0; ii < packet_count; ii++) { | |
int16_t accel_temp[3] = {0, 0, 0}, gyro_temp[3] = {0, 0, 0}; | |
readBytes(MPU9250_address_, FIFO_R_W, 12, &data[0]); // read data for averaging | |
accel_temp[0] = (int16_t) (((int16_t)data[0] << 8) | data[1] ); // Form signed 16-bit integer for each sample in FIFO | |
accel_temp[1] = (int16_t) (((int16_t)data[2] << 8) | data[3] ); | |
accel_temp[2] = (int16_t) (((int16_t)data[4] << 8) | data[5] ); | |
gyro_temp[0] = (int16_t) (((int16_t)data[6] << 8) | data[7] ); | |
gyro_temp[1] = (int16_t) (((int16_t)data[8] << 8) | data[9] ); | |
gyro_temp[2] = (int16_t) (((int16_t)data[10] << 8) | data[11]); | |
accel_bias[0] += (int32_t) accel_temp[0]; // Sum individual signed 16-bit biases to get accumulated signed 32-bit biases | |
accel_bias[1] += (int32_t) accel_temp[1]; | |
accel_bias[2] += (int32_t) accel_temp[2]; | |
gyro_bias[0] += (int32_t) gyro_temp[0]; | |
gyro_bias[1] += (int32_t) gyro_temp[1]; | |
gyro_bias[2] += (int32_t) gyro_temp[2]; | |
} | |
accel_bias[0] /= (int32_t) packet_count; // Normalize sums to get average count biases | |
accel_bias[1] /= (int32_t) packet_count; | |
accel_bias[2] /= (int32_t) packet_count; | |
gyro_bias[0] /= (int32_t) packet_count; | |
gyro_bias[1] /= (int32_t) packet_count; | |
gyro_bias[2] /= (int32_t) packet_count; | |
if (accel_bias[2] > 0L) {accel_bias[2] -= (int32_t) accelsensitivity;} // Remove gravity from the z-axis accelerometer bias calculation | |
else {accel_bias[2] += (int32_t) accelsensitivity;} | |
// Construct the gyro biases for push to the hardware gyro bias registers, which are reset to zero upon device startup | |
data[0] = (-gyro_bias[0] / 4 >> 8) & 0xFF; // Divide by 4 to get 32.9 LSB per deg/s to conform to expected bias input format | |
data[1] = (-gyro_bias[0] / 4) & 0xFF; // Biases are additive, so change sign on calculated average gyro biases | |
data[2] = (-gyro_bias[1] / 4 >> 8) & 0xFF; | |
data[3] = (-gyro_bias[1] / 4) & 0xFF; | |
data[4] = (-gyro_bias[2] / 4 >> 8) & 0xFF; | |
data[5] = (-gyro_bias[2] / 4) & 0xFF; | |
// Push gyro biases to hardware registers | |
writeByte(MPU9250_address_, XG_OFFSET_H, data[0]); | |
writeByte(MPU9250_address_, XG_OFFSET_L, data[1]); | |
writeByte(MPU9250_address_, YG_OFFSET_H, data[2]); | |
writeByte(MPU9250_address_, YG_OFFSET_L, data[3]); | |
writeByte(MPU9250_address_, ZG_OFFSET_H, data[4]); | |
writeByte(MPU9250_address_, ZG_OFFSET_L, data[5]); | |
// Output scaled gyro biases for display in the main program | |
gyroBias[0] = (float) gyro_bias[0] / (float) gyrosensitivity; | |
gyroBias[1] = (float) gyro_bias[1] / (float) gyrosensitivity; | |
gyroBias[2] = (float) gyro_bias[2] / (float) gyrosensitivity; | |
// Construct the accelerometer biases for push to the hardware accelerometer bias registers. These registers contain | |
// factory trim values which must be added to the calculated accelerometer biases; on boot up these registers will hold | |
// non-zero values. In addition, bit 0 of the lower byte must be preserved since it is used for temperature | |
// compensation calculations. Accelerometer bias registers expect bias input as 2048 LSB per g, so that | |
// the accelerometer biases calculated above must be divided by 8. | |
int32_t accel_bias_reg[3] = {0, 0, 0}; // A place to hold the factory accelerometer trim biases | |
readBytes(MPU9250_address_, XA_OFFSET_H, 2, &data[0]); // Read factory accelerometer trim values | |
accel_bias_reg[0] = (int32_t) (((int16_t)data[0] << 8) | data[1]); | |
readBytes(MPU9250_address_, YA_OFFSET_H, 2, &data[0]); | |
accel_bias_reg[1] = (int32_t) (((int16_t)data[0] << 8) | data[1]); | |
readBytes(MPU9250_address_, ZA_OFFSET_H, 2, &data[0]); | |
accel_bias_reg[2] = (int32_t) (((int16_t)data[0] << 8) | data[1]); | |
uint32_t mask = 1uL; // Define mask for temperature compensation bit 0 of lower byte of accelerometer bias registers | |
uint8_t mask_bit[3] = {0, 0, 0}; // Define array to hold mask bit for each accelerometer bias axis | |
for (ii = 0; ii < 3; ii++) { | |
if ((accel_bias_reg[ii] & mask)) mask_bit[ii] = 0x01; // If temperature compensation bit is set, record that fact in mask_bit | |
} | |
// Construct total accelerometer bias, including calculated average accelerometer bias from above | |
accel_bias_reg[0] -= (accel_bias[0] / 8); // Subtract calculated averaged accelerometer bias scaled to 2048 LSB/g (16 g full scale) | |
accel_bias_reg[1] -= (accel_bias[1] / 8); | |
accel_bias_reg[2] -= (accel_bias[2] / 8); | |
data[0] = (accel_bias_reg[0] >> 8) & 0xFF; | |
data[1] = (accel_bias_reg[0]) & 0xFF; | |
data[1] = data[1] | mask_bit[0]; // preserve temperature compensation bit when writing back to accelerometer bias registers | |
data[2] = (accel_bias_reg[1] >> 8) & 0xFF; | |
data[3] = (accel_bias_reg[1]) & 0xFF; | |
data[3] = data[3] | mask_bit[1]; // preserve temperature compensation bit when writing back to accelerometer bias registers | |
data[4] = (accel_bias_reg[2] >> 8) & 0xFF; | |
data[5] = (accel_bias_reg[2]) & 0xFF; | |
data[5] = data[5] | mask_bit[2]; // preserve temperature compensation bit when writing back to accelerometer bias registers | |
// Apparently this is not working for the acceleration biases in the MPU-9250 | |
// Are we handling the temperature correction bit properly? | |
// Push accelerometer biases to hardware registers | |
writeByte(MPU9250_address_, XA_OFFSET_H, data[0]); | |
writeByte(MPU9250_address_, XA_OFFSET_L, data[1]); | |
writeByte(MPU9250_address_, YA_OFFSET_H, data[2]); | |
writeByte(MPU9250_address_, YA_OFFSET_L, data[3]); | |
writeByte(MPU9250_address_, ZA_OFFSET_H, data[4]); | |
writeByte(MPU9250_address_, ZA_OFFSET_L, data[5]); | |
// Output scaled accelerometer biases for display in the main program | |
accelBias[0] = (float)accel_bias[0] / (float)accelsensitivity; | |
accelBias[1] = (float)accel_bias[1] / (float)accelsensitivity; | |
accelBias[2] = (float)accel_bias[2] / (float)accelsensitivity; | |
} | |
// Accelerometer and gyroscope self test; check calibration wrt factory settings | |
void MPU9250::MPU9250SelfTest(float * destination) { // Should return percent deviation from factory trim values, +/- 14 or less deviation is a pass | |
uint8_t rawData[6] = {0, 0, 0, 0, 0, 0}; | |
uint8_t selfTest[6]; | |
int16_t gAvg[3], aAvg[3], aSTAvg[3], gSTAvg[3]; | |
float factoryTrim[6]; | |
uint8_t FS = 0; | |
writeByte(MPU9250_address_, SMPLRT_DIV, 0x00); // Set gyro sample rate to 1 kHz | |
writeByte(MPU9250_address_, CONFIG, 0x02); // Set gyro sample rate to 1 kHz and DLPF to 92 Hz | |
writeByte(MPU9250_address_, GYRO_CONFIG, 1 << FS); // Set full scale range for the gyro to 250 dps | |
writeByte(MPU9250_address_, ACCEL_CONFIG2, 0x02); // Set accelerometer rate to 1 kHz and bandwidth to 92 Hz | |
writeByte(MPU9250_address_, ACCEL_CONFIG, 1 << FS); // Set full scale range for the accelerometer to 2 g | |
for ( int ii = 0; ii < 200; ii++) { // get average current values of gyro and acclerometer | |
readBytes(MPU9250_address_, ACCEL_XOUT_H, 6, &rawData[0]); // Read the six raw data registers into data array | |
aAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value | |
aAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ; | |
aAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ; | |
readBytes(MPU9250_address_, GYRO_XOUT_H, 6, &rawData[0]); // Read the six raw data registers sequentially into data array | |
gAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value | |
gAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ; | |
gAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ; | |
} | |
for (int ii = 0; ii < 3; ii++) { // Get average of 200 values and store as average current readings | |
aAvg[ii] /= 200; | |
gAvg[ii] /= 200; | |
} | |
// Configure the accelerometer for self-test | |
writeByte(MPU9250_address_, ACCEL_CONFIG, 0xE0); // Enable self test on all three axes and set accelerometer range to +/- 2 g | |
writeByte(MPU9250_address_, GYRO_CONFIG, 0xE0); // Enable self test on all three axes and set gyro range to +/- 250 degrees/s | |
delay(25); // Delay a while to let the device stabilize | |
for ( int ii = 0; ii < 200; ii++) { // get average self-test values of gyro and acclerometer | |
readBytes(MPU9250_address_, ACCEL_XOUT_H, 6, &rawData[0]); // Read the six raw data registers into data array | |
aSTAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value | |
aSTAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ; | |
aSTAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ; | |
readBytes(MPU9250_address_, GYRO_XOUT_H, 6, &rawData[0]); // Read the six raw data registers sequentially into data array | |
gSTAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value | |
gSTAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ; | |
gSTAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ; | |
} | |
for (int ii = 0; ii < 3; ii++) { // Get average of 200 values and store as average self-test readings | |
aSTAvg[ii] /= 200; | |
gSTAvg[ii] /= 200; | |
} | |
// Configure the gyro and accelerometer for normal operation | |
writeByte(MPU9250_address_, ACCEL_CONFIG, 0x00); | |
writeByte(MPU9250_address_, GYRO_CONFIG, 0x00); | |
delay(25); // Delay a while to let the device stabilize | |
// Retrieve accelerometer and gyro factory Self-Test Code from USR_Reg | |
selfTest[0] = readByte(MPU9250_address_, SELF_TEST_X_ACCEL); // X-axis accel self-test results | |
selfTest[1] = readByte(MPU9250_address_, SELF_TEST_Y_ACCEL); // Y-axis accel self-test results | |
selfTest[2] = readByte(MPU9250_address_, SELF_TEST_Z_ACCEL); // Z-axis accel self-test results | |
selfTest[3] = readByte(MPU9250_address_, SELF_TEST_X_GYRO); // X-axis gyro self-test results | |
selfTest[4] = readByte(MPU9250_address_, SELF_TEST_Y_GYRO); // Y-axis gyro self-test results | |
selfTest[5] = readByte(MPU9250_address_, SELF_TEST_Z_GYRO); // Z-axis gyro self-test results | |
// Retrieve factory self-test value from self-test code reads | |
factoryTrim[0] = (float)(2620 / 1 << FS) * (pow( 1.01 , ((float)selfTest[0] - 1.0) )); // FT[Xa] factory trim calculation | |
factoryTrim[1] = (float)(2620 / 1 << FS) * (pow( 1.01 , ((float)selfTest[1] - 1.0) )); // FT[Ya] factory trim calculation | |
factoryTrim[2] = (float)(2620 / 1 << FS) * (pow( 1.01 , ((float)selfTest[2] - 1.0) )); // FT[Za] factory trim calculation | |
factoryTrim[3] = (float)(2620 / 1 << FS) * (pow( 1.01 , ((float)selfTest[3] - 1.0) )); // FT[Xg] factory trim calculation | |
factoryTrim[4] = (float)(2620 / 1 << FS) * (pow( 1.01 , ((float)selfTest[4] - 1.0) )); // FT[Yg] factory trim calculation | |
factoryTrim[5] = (float)(2620 / 1 << FS) * (pow( 1.01 , ((float)selfTest[5] - 1.0) )); // FT[Zg] factory trim calculation | |
// Report results as a ratio of (STR - FT)/FT; the change from Factory Trim of the Self-Test Response | |
// To get percent, must multiply by 100 | |
for (int i = 0; i < 3; i++) { | |
destination[i] = 100.0 * ((float)(aSTAvg[i] - aAvg[i])) / factoryTrim[i]; // Report percent differences | |
destination[i + 3] = 100.0 * ((float)(gSTAvg[i] - gAvg[i])) / factoryTrim[i + 3]; // Report percent differences | |
} | |
} | |
// Wire.h read and write protocols | |
void MPU9250::writeByte(uint8_t address, uint8_t subAddress, uint8_t data) { | |
Wire.beginTransmission(address); // Initialize the Tx buffer | |
Wire.write(subAddress); // Put slave register address in Tx buffer | |
Wire.write(data); // Put data in Tx buffer | |
Wire.endTransmission(); // Send the Tx buffer | |
} | |
uint8_t MPU9250::readByte(uint8_t address, uint8_t subAddress) { | |
uint8_t data; // `data` will store the register data | |
Wire.beginTransmission(address); // Initialize the Tx buffer | |
Wire.write(subAddress); // Put slave register address in Tx buffer | |
Wire.endTransmission(false); // Send the Tx buffer, but send a restart to keep connection alive | |
Wire.requestFrom(address, (uint8_t) 1); // Read one byte from slave register address | |
data = Wire.read(); // Fill Rx buffer with result | |
return data; // Return data read from slave register | |
} | |
void MPU9250::readBytes(uint8_t address, uint8_t subAddress, uint8_t count, | |
uint8_t * dest) { | |
Wire.beginTransmission(address); // Initialize the Tx buffer | |
Wire.write(subAddress); // Put slave register address in Tx buffer | |
Wire.endTransmission(false); // Send the Tx buffer, but send a restart to keep connection alive | |
uint8_t i = 0; | |
Wire.requestFrom(address, count); // Read bytes from slave register address | |
while (Wire.available()) { | |
dest[i++] = Wire.read(); | |
} // Put read results in the Rx buffer | |
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
/* | |
Note: The MPU9250 is an I2C sensor and uses the Arduino Wire library. | |
Because the sensor is not 5V tolerant, we are using a 3.3 V 8 MHz Pro Mini or | |
a 3.3 V Teensy 3.1. We have disabled the internal pull-ups used by the Wire | |
library in the Wire.h/twi.c utility file. We are also using the 400 kHz fast | |
I2C mode by setting the TWI_FREQ to 400000L /twi.h utility file. | |
*/ | |
#ifndef _MPU9250_H_ | |
#define _MPU9250_H_ | |
#include <SPI.h> | |
#include <Wire.h> | |
// See also MPU-9250 Register Map and Descriptions, Revision 4.0, | |
// RM-MPU-9250A-00, Rev. 1.4, 9/9/2013 for registers not listed in above | |
// document; the MPU9250 and MPU9150 are virtually identical but the latter has | |
// a different register map | |
// https://cdn.sparkfun.com/assets/learn_tutorials/5/5/0/MPU-9250-Register-Map.pdf | |
//Magnetometer Registers | |
// #define AK8963_ADDRESS 0x0C | |
#define WHO_AM_I_AK8963 0x00 // should return 0x48 | |
#define INFO 0x01 | |
#define AK8963_ST1 0x02 // data ready status bit 0 | |
#define AK8963_XOUT_L 0x03 // data | |
#define AK8963_XOUT_H 0x04 | |
#define AK8963_YOUT_L 0x05 | |
#define AK8963_YOUT_H 0x06 | |
#define AK8963_ZOUT_L 0x07 | |
#define AK8963_ZOUT_H 0x08 | |
#define AK8963_ST2 0x09 // Data overflow bit 3 and data read error status bit 2 | |
#define AK8963_CNTL 0x0A // Power down (0000), single-measurement (0001), self-test (1000) and Fuse ROM (1111) modes on bits 3:0 | |
#define AK8963_ASTC 0x0C // Self test control | |
#define AK8963_I2CDIS 0x0F // I2C disable | |
#define AK8963_ASAX 0x10 // Fuse ROM x-axis sensitivity adjustment value | |
#define AK8963_ASAY 0x11 // Fuse ROM y-axis sensitivity adjustment value | |
#define AK8963_ASAZ 0x12 // Fuse ROM z-axis sensitivity adjustment value | |
#define SELF_TEST_X_GYRO 0x00 | |
#define SELF_TEST_Y_GYRO 0x01 | |
#define SELF_TEST_Z_GYRO 0x02 | |
/*#define X_FINE_GAIN 0x03 // [7:0] fine gain | |
#define Y_FINE_GAIN 0x04 | |
#define Z_FINE_GAIN 0x05 | |
#define XA_OFFSET_H 0x06 // User-defined trim values for accelerometer | |
#define XA_OFFSET_L_TC 0x07 | |
#define YA_OFFSET_H 0x08 | |
#define YA_OFFSET_L_TC 0x09 | |
#define ZA_OFFSET_H 0x0A | |
#define ZA_OFFSET_L_TC 0x0B */ | |
#define SELF_TEST_X_ACCEL 0x0D | |
#define SELF_TEST_Y_ACCEL 0x0E | |
#define SELF_TEST_Z_ACCEL 0x0F | |
#define SELF_TEST_A 0x10 | |
#define XG_OFFSET_H 0x13 // User-defined trim values for gyroscope | |
#define XG_OFFSET_L 0x14 | |
#define YG_OFFSET_H 0x15 | |
#define YG_OFFSET_L 0x16 | |
#define ZG_OFFSET_H 0x17 | |
#define ZG_OFFSET_L 0x18 | |
#define SMPLRT_DIV 0x19 | |
#define CONFIG 0x1A | |
#define GYRO_CONFIG 0x1B | |
#define ACCEL_CONFIG 0x1C | |
#define ACCEL_CONFIG2 0x1D | |
#define LP_ACCEL_ODR 0x1E | |
#define WOM_THR 0x1F | |
// Duration counter threshold for motion interrupt generation, 1 kHz rate, | |
// LSB = 1 ms | |
#define MOT_DUR 0x20 | |
// Zero-motion detection threshold bits [7:0] | |
#define ZMOT_THR 0x21 | |
// Duration counter threshold for zero motion interrupt generation, 16 Hz rate, | |
// LSB = 64 ms | |
#define ZRMOT_DUR 0x22 | |
#define FIFO_EN 0x23 | |
#define I2C_MST_CTRL 0x24 | |
#define I2C_SLV0_ADDR 0x25 | |
#define I2C_SLV0_REG 0x26 | |
#define I2C_SLV0_CTRL 0x27 | |
#define I2C_SLV1_ADDR 0x28 | |
#define I2C_SLV1_REG 0x29 | |
#define I2C_SLV1_CTRL 0x2A | |
#define I2C_SLV2_ADDR 0x2B | |
#define I2C_SLV2_REG 0x2C | |
#define I2C_SLV2_CTRL 0x2D | |
#define I2C_SLV3_ADDR 0x2E | |
#define I2C_SLV3_REG 0x2F | |
#define I2C_SLV3_CTRL 0x30 | |
#define I2C_SLV4_ADDR 0x31 | |
#define I2C_SLV4_REG 0x32 | |
#define I2C_SLV4_DO 0x33 | |
#define I2C_SLV4_CTRL 0x34 | |
#define I2C_SLV4_DI 0x35 | |
#define I2C_MST_STATUS 0x36 | |
#define INT_PIN_CFG 0x37 | |
#define INT_ENABLE 0x38 | |
#define DMP_INT_STATUS 0x39 // Check DMP interrupt | |
#define INT_STATUS 0x3A | |
#define ACCEL_XOUT_H 0x3B | |
#define ACCEL_XOUT_L 0x3C | |
#define ACCEL_YOUT_H 0x3D | |
#define ACCEL_YOUT_L 0x3E | |
#define ACCEL_ZOUT_H 0x3F | |
#define ACCEL_ZOUT_L 0x40 | |
#define TEMP_OUT_H 0x41 | |
#define TEMP_OUT_L 0x42 | |
#define GYRO_XOUT_H 0x43 | |
#define GYRO_XOUT_L 0x44 | |
#define GYRO_YOUT_H 0x45 | |
#define GYRO_YOUT_L 0x46 | |
#define GYRO_ZOUT_H 0x47 | |
#define GYRO_ZOUT_L 0x48 | |
#define EXT_SENS_DATA_00 0x49 | |
#define EXT_SENS_DATA_01 0x4A | |
#define EXT_SENS_DATA_02 0x4B | |
#define EXT_SENS_DATA_03 0x4C | |
#define EXT_SENS_DATA_04 0x4D | |
#define EXT_SENS_DATA_05 0x4E | |
#define EXT_SENS_DATA_06 0x4F | |
#define EXT_SENS_DATA_07 0x50 | |
#define EXT_SENS_DATA_08 0x51 | |
#define EXT_SENS_DATA_09 0x52 | |
#define EXT_SENS_DATA_10 0x53 | |
#define EXT_SENS_DATA_11 0x54 | |
#define EXT_SENS_DATA_12 0x55 | |
#define EXT_SENS_DATA_13 0x56 | |
#define EXT_SENS_DATA_14 0x57 | |
#define EXT_SENS_DATA_15 0x58 | |
#define EXT_SENS_DATA_16 0x59 | |
#define EXT_SENS_DATA_17 0x5A | |
#define EXT_SENS_DATA_18 0x5B | |
#define EXT_SENS_DATA_19 0x5C | |
#define EXT_SENS_DATA_20 0x5D | |
#define EXT_SENS_DATA_21 0x5E | |
#define EXT_SENS_DATA_22 0x5F | |
#define EXT_SENS_DATA_23 0x60 | |
#define MOT_DETECT_STATUS 0x61 | |
#define I2C_SLV0_DO 0x63 | |
#define I2C_SLV1_DO 0x64 | |
#define I2C_SLV2_DO 0x65 | |
#define I2C_SLV3_DO 0x66 | |
#define I2C_MST_DELAY_CTRL 0x67 | |
#define SIGNAL_PATH_RESET 0x68 | |
#define MOT_DETECT_CTRL 0x69 | |
#define USER_CTRL 0x6A // Bit 7 enable DMP, bit 3 reset DMP | |
#define PWR_MGMT_1 0x6B // Device defaults to the SLEEP mode | |
#define PWR_MGMT_2 0x6C | |
#define DMP_BANK 0x6D // Activates a specific bank in the DMP | |
#define DMP_RW_PNT 0x6E // Set read/write pointer to a specific start address in specified DMP bank | |
#define DMP_REG 0x6F // Register in DMP from which to read or to which to write | |
#define DMP_REG_1 0x70 | |
#define DMP_REG_2 0x71 | |
#define FIFO_COUNTH 0x72 | |
#define FIFO_COUNTL 0x73 | |
#define FIFO_R_W 0x74 | |
#define WHO_AM_I_MPU9250 0x75 // Should return 0x71 | |
#define XA_OFFSET_H 0x77 | |
#define XA_OFFSET_L 0x78 | |
#define YA_OFFSET_H 0x7A | |
#define YA_OFFSET_L 0x7B | |
#define ZA_OFFSET_H 0x7D | |
#define ZA_OFFSET_L 0x7E | |
// Using the MPU-9250 breakout board, ADO is set to 0 | |
// Seven-bit device address is 110100 for ADO = 0 and 110101 for ADO = 1 | |
// #define ADO 0 | |
// #if ADO | |
// #define MPU9250_ADDRESS 0x69 // Device address when ADO = 1 | |
// #else | |
// #define MPU9250_ADDRESS 0x68 // Device address when ADO = 0 | |
// AK8963_ADDRESS: 0x0C, 0x0D, 0x0E and 0x0F depending on CAD0/1 pins | |
// https://strawberry-linux.com/pub/AK8963.pdf | |
// #define AK8963_ADDRESS 0x0C // Address of magnetometer | |
// #endif // ADO | |
class MPU9250 { | |
protected: | |
// to use two MPU9250, add address member variables to this class. | |
uint8_t MPU9250_address_; | |
uint8_t AK8963_address_; | |
// Set initial input parameters | |
enum Ascale { | |
AFS_2G = 0, | |
AFS_4G, | |
AFS_8G, | |
AFS_16G | |
}; | |
enum Gscale { | |
GFS_250DPS = 0, | |
GFS_500DPS, | |
GFS_1000DPS, | |
GFS_2000DPS | |
}; | |
enum Mscale { | |
MFS_14BITS = 0, // 0.6 mG per LSB | |
MFS_16BITS // 0.15 mG per LSB | |
}; | |
// Specify sensor full scale | |
uint8_t Gscale; | |
uint8_t Ascale; | |
// Choose either 14-bit or 16-bit magnetometer resolution | |
uint8_t Mscale; | |
// 2 for 8 Hz, 6 for 100 Hz continuous magnetometer data read | |
uint8_t Mmode; | |
public: | |
float pitch, yaw, roll; | |
float temperature; // Stores the real internal chip temperature in Celsius | |
int16_t tempCount; // Temperature raw count output | |
uint32_t delt_t = 0; // Used to control display output rate | |
uint32_t count = 0, sumCount = 0; // used to control display output rate | |
float deltat = 0.0f, sum = 0.0f; // integration interval for both filter schemes | |
uint32_t lastUpdate = 0, firstUpdate = 0; // used to calculate integration interval | |
uint32_t Now = 0; // used to calculate integration interval | |
int16_t gyroCount[3]; // Stores the 16-bit signed gyro sensor output | |
int16_t magCount[3]; // Stores the 16-bit signed magnetometer sensor output | |
// Scale resolutions per LSB for the sensors | |
float aRes, gRes, mRes; | |
// Variables to hold latest sensor data values | |
float ax, ay, az, gx, gy, gz, mx, my, mz; | |
// Factory mag calibration and mag bias | |
float magCalibration[3] = {0, 0, 0}, magbias[3] = {0, 0, 0}; | |
// Bias corrections for gyro and accelerometer | |
float gyroBias[3] = {0, 0, 0}, accelBias[3] = {0, 0, 0}; | |
float SelfTest[6]; | |
// Stores the 16-bit signed accelerometer sensor output | |
int16_t accelCount[3]; | |
float threshold_; // threashold for detecting strike | |
public: | |
MPU9250(); | |
void setAddress(uint8_t MPU9250_address = 0x68, | |
uint8_t AK8963_address = 0x0c); | |
uint8_t address(bool is_inertia = true); | |
void update(bool is_mag = true); | |
void setRange(uint8_t a_scale, uint8_t g_scale); | |
bool isStrike(); | |
bool init(); | |
void getMres(); | |
void getGres(); | |
void getAres(); | |
void readAccelData(int16_t *); | |
void readGyroData(int16_t *); | |
void readMagData(int16_t *); | |
int16_t readTempData(); | |
void updateTime(); | |
void initAK8963(float *); | |
void initMPU9250(); | |
void calibrateMPU9250(float * gyroBias, float * accelBias); | |
void MPU9250SelfTest(float * destination); | |
void writeByte(uint8_t, uint8_t, uint8_t); | |
uint8_t readByte(uint8_t, uint8_t); | |
void readBytes(uint8_t, uint8_t, uint8_t, uint8_t *); | |
}; // class MPU9250 | |
#endif // _MPU9250_H_ |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment