Skip to content

Instantly share code, notes, and snippets.

@bouk
Forked from cpojer/immutable.js
Last active March 15, 2016 00:00
Show Gist options
  • Save bouk/d29a6cafab0b9b3b1ec6 to your computer and use it in GitHub Desktop.
Save bouk/d29a6cafab0b9b3b1ec6 to your computer and use it in GitHub Desktop.
// Copyright 2004-present Facebook. All Rights Reserved.
/**
* Immutable data encourages pure functions (data-in, data-out) and lends itself
* to much simpler application development and enabling techniques from
* functional programming such as lazy evaluation.
*
* While designed to bring these powerful functional concepts to JavaScript, it
* presents an Object-Oriented API familiar to JavaScript engineers and closely
* mirroring that of Array, Map, and Set. It is easy and efficient to convert to
* and from plain JavaScript types.
* Note: all examples are presented in [ES6][]. To run in all browsers, they
* need to be translated to ES3. For example:
*
* // ES6
* foo.map(x => x * x);
* // ES3
* foo.map(function (x) { return x * x; });
*
* [ES6]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/New_in_JavaScript/ECMAScript_6_support_in_Mozilla
*/
declare module 'immutable' {
/**
* Deeply converts plain JS objects and arrays to Immutable Maps and Lists.
*
* If a `reviver` is optionally provided, it will be called with every
* collection as a Seq (beginning with the most nested collections
* and proceeding to the top-level collection itself), along with the key
* referring to each collection and the parent JS object provided as `this`.
* For the top level, object, the key will be `""`. This `reviver` is expected
* to return a new Immutable Iterable, allowing for custom convertions from
* deep JS objects.
*
* This example converts JSON to List and OrderedMap:
*
* Immutable.fromJS({a: {b: [10, 20, 30]}, c: 40}, function (key, value) {
* var isIndexed = Immutable.Iterable.isIndexed(value);
* return isIndexed ? value.toList() : value.toOrderedMap();
* });
*
* // true, "b", {b: [10, 20, 30]}
* // false, "a", {a: {b: [10, 20, 30]}, c: 40}
* // false, "", {"": {a: {b: [10, 20, 30]}, c: 40}}
*
* If `reviver` is not provided, the default behavior will convert Arrays into
* Lists and Objects into Maps.
*
* `reviver` acts similarly to the [same parameter in `JSON.parse`][1].
*
* `Immutable.fromJS` is conservative in it's conversion. It will only convert
* arrays which pass `Array.isArray` to Lists, and only raw objects (no custom
* prototype) to Map.
*
* [1]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/JSON/parse#Example.3A_Using_the_reviver_parameter
* "Using the reviver parameter"
*/
declare function fromJS(
json: any,
reviver?: (k: any, v: Iterable<any, any>) => any
): any;
/**
* Value equality check with semantics similar to `Object.is`, but treats
* Immutable `Iterable`s as values, equal if the second `Iterable` contains
* equivalent values.
*
* It's used throughout Immutable when checking for equality, including `Map`
* key equality and `Set` membership.
*
* var map1 = Immutable.Map({a:1, b:1, c:1});
* var map2 = Immutable.Map({a:1, b:1, c:1});
* assert(map1 !== map2);
* assert(Object.is(map1, map2) === false);
* assert(Immutable.is(map1, map2) === true);
*
* Note: Unlike `Object.is`, `Immutable.is` assumes `0` and `-0` are the same
* value, matching the behavior of ES6 Map key equality.
*/
declare function is(first: any, second: any): boolean;
/**
* Lists are ordered indexed dense collections, much like a JavaScript
* Array.
*
* Lists are immutable and fully persistent with O(log32 N) gets and sets,
* and O(1) push and pop.
*
* Lists implement Deque, with efficient addition and removal from both the
* end (`push`, `pop`) and beginning (`unshift`, `shift`).
*
* Unlike a JavaScript Array, there is no distinction between an
* "unset" index and an index set to `undefined`. `List#forEach` visits all
* indices from 0 to size, regardless of if they where explicitly defined.
*/
declare class List<T> extends IndexedCollection<T> {
/**
* Create a new immutable List containing the values of the provided
* iterable-like.
*/
static <T>(iter?: IndexedIterable<T>): List<T>;
static <T>(iter?: SetIterable<T>): List<T>;
static <T>(iterator?: Iterator<T>): List<T>;
static <T>(iterable?: Iterable<number, T>): List<T>;
/**
* True if the provided value is a List
*/
static isList(maybeList: any): boolean;
/**
* Creates a new List containing `values`.
*/
static of<T>(...values: T[]): List<T>;
// Persistent changes
/**
* Returns a new List which includes `value` at `index`. If `index` already
* exists in this List, it will be replaced.
*
* `index` may be a negative number, which indexes back from the end of the
* List. `v.set(-1, "value")` sets the last item in the List.
*
* If `index` larger than `size`, the returned List's `size` will be large
* enough to include the `index`.
*/
set(index: number, value: T): List<T>;
/**
* Returns a new List which excludes this `index` and with a size 1 less
* than this List. Values at indicies above `index` are shifted down by 1 to
* fill the position.
*
* This is synonymous with `list.splice(index, 1)`.
*
* `index` may be a negative number, which indexes back from the end of the
* List. `v.delete(-1)` deletes the last item in the List.
*
* Note: `delete` cannot be safely used in IE8
* @alias remove
*/
delete(index: number): List<T>;
remove(index: number): List<T>;
/**
* Returns a new List with 0 size and no values.
*/
clear(): List<T>;
/**
* Returns a new List with the provided `values` appended, starting at this
* List's `size`.
*/
push(...values: T[]): List<T>;
/**
* Returns a new List with a size ones less than this List, excluding
* the last index in this List.
*
* Note: this differs from `Array#pop` because it returns a new
* List rather than the removed value. Use `last()` to get the last value
* in this List.
*/
pop(): List<T>;
/**
* Returns a new List with the provided `values` prepended, shifting other
* values ahead to higher indices.
*/
unshift(...values: T[]): List<T>;
/**
* Returns a new List with a size ones less than this List, excluding
* the first index in this List, shifting all other values to a lower index.
*
* Note: this differs from `Array#shift` because it returns a new
* List rather than the removed value. Use `first()` to get the first
* value in this List.
*/
shift(): List<T>;
/**
* Returns a new List with an updated value at `index` with the return
* value of calling `updater` with the existing value, or `notSetValue` if
* `index` was not set. If called with a single argument, `updater` is
* called with the List itself.
*
* `index` may be a negative number, which indexes back from the end of the
* List. `v.update(-1)` updates the last item in the List.
*
* @see `Map#update`
*/
update(updater: (value: List<T>) => List<T>): List<T>;
update(index: number, updater: (value: T) => T): List<T>;
update(index: number, notSetValue: T, updater: (value: T) => T): List<T>;
/**
* @see `Map#merge`
*/
merge(...iterables: IndexedIterable<T>[]): List<T>;
merge(...iterables: Array<T>[]): List<T>;
/**
* @see `Map#mergeWith`
*/
mergeWith(
merger: (previous: T, next: T) => T,
...iterables: IndexedIterable<T>[]
): List<T>;
mergeWith(
merger: (previous: T, next: T) => T,
...iterables: Array<T>[]
): List<T>;
/**
* @see `Map#mergeDeep`
*/
mergeDeep(...iterables: IndexedIterable<T>[]): List<T>;
mergeDeep(...iterables: Array<T>[]): List<T>;
/**
* @see `Map#mergeDeepWith`
*/
mergeDeepWith(
merger: (previous: T, next: T) => T,
...iterables: IndexedIterable<T>[]
): List<T>;
mergeDeepWith(
merger: (previous: T, next: T) => T,
...iterables: Array<T>[]
): List<T>;
/**
* Returns a new List with size `size`. If `size` is less than this
* List's size, the new List will exclude values at the higher indices.
* If `size` is greater than this List's size, the new List will have
* undefined values for the newly available indices.
*
* When building a new List and the final size is known up front, `setSize`
* used in conjunction with `withMutations` may result in the more
* performant construction.
*/
setSize(size: number): List<T>;
// Deep persistent changes
/**
* Returns a new List having set `value` at this `keyPath`. If any keys in
* `keyPath` do not exist, a new immutable Map will be created at that key.
*
* Index numbers are used as keys to determine the path to follow in
* the List.
*/
setIn(keyPath: Array<any>, value: T): List<T>;
setIn(keyPath: Iterable<any, any>, value: T): List<T>;
/**
* Returns a new List having removed the value at this `keyPath`. If any
* keys in `keyPath` do not exist, a new immutable Map will be created at
* that key.
*
* @alias removeIn
*/
deleteIn(keyPath: Array<any>): List<T>;
deleteIn(keyPath: Iterable<any, any>): List<T>;
removeIn(keyPath: Array<any>): List<T>;
removeIn(keyPath: Iterable<any, any>): List<T>;
/**
* @see `Map#updateIn`
*/
updateIn(
keyPath: Array<any>,
updater: (value: any) => any
): List<T>;
updateIn(
keyPath: Array<any>,
notSetValue: any,
updater: (value: any) => any
): List<T>;
updateIn(
keyPath: Iterable<any, any>,
updater: (value: any) => any
): List<T>;
updateIn(
keyPath: Iterable<any, any>,
notSetValue: any,
updater: (value: any) => any
): List<T>;
/**
* @see `Map#mergeIn`
*/
mergeIn(
keyPath: Iterable<any, any>,
...iterables: IndexedIterable<T>[]
): List<T>;
mergeIn(
keyPath: Array<any>,
...iterables: IndexedIterable<T>[]
): List<T>;
mergeIn(
keyPath: Array<any>,
...iterables: Array<T>[]
): List<T>;
/**
* @see `Map#mergeDeepIn`
*/
mergeDeepIn(
keyPath: Iterable<any, any>,
...iterables: IndexedIterable<T>[]
): List<T>;
mergeDeepIn(
keyPath: Array<any>,
...iterables: IndexedIterable<T>[]
): List<T>;
mergeDeepIn(
keyPath: Array<any>,
...iterables: Array<T>[]
): List<T>;
// Transient changes
/**
* @see `Map#withMutations`
*/
withMutations(mutator: (mutable: List<T>) => any): List<T>;
/**
* @see `Map#asMutable`
*/
asMutable(): List<T>;
/**
* @see `Map#asImmutable`
*/
asImmutable(): List<T>;
}
/**
* Immutable Map is an unordered KeyedIterable of (key, value) pairs with
* `O(log32 N)` gets and `O(log32 N)` persistent sets.
*
* Iteration order of a Map is undefined, however is stable. Multiple
* iterations of the same Map will iterate in the same order.
*
* Map's keys can be of any type, and use `Immutable.is` to determine key
* equality. This allows the use of any value (including NaN) as a key.
*
* Because `Immutable.is` returns equality based on value semantics, and
* Immutable collections are treated as values, any Immutable collection may
* be used as a key.
*
* Map().set(List.of(1), 'listofone').get(List.of(1));
* // 'listofone'
*
* Any JavaScript object may be used as a key, however strict identity is used
* to evaluate key equality. Two similar looking objects will represent two
* different keys.
*
* Implemented by a hash-array mapped trie.
*/
declare class Map<K, V> extends KeyedCollection<K, V> {
/**
* Creates a new Immutable Map.
*
* Created with the same key value pairs as the provided KeyedIterable or
* JavaScript Object or expects an Iterable of [K, V] tuple entries.
*
* var newMap = Map({key: "value"});
* var newMap = Map([["key", "value"]]);
*
*/
static <K, V>(iter?: KeyedIterable<K, V>): Map<K, V>;
static <V>(obj?: {[key: string]: V}): Map<string, V>;
static <K, V>(iterator?: Iterator<[K,V]>): Map<K, V>;
static <K, V>(iterable?: Iterable<[K,V]>): Map<K, V>;
/**
* True if the provided value is a Map
*/
static isMap(maybeMap: any): boolean;
// Persistent changes
/**
* Returns a new Map also containing the new key, value pair. If an equivalent
* key already exists in this Map, it will be replaced.
*/
set(key: K, value: V): Map<K, V>;
/**
* Returns a new Map which excludes this `key`.
*
* Note: `delete` cannot be safely used in IE8, but is provided to mirror
* the ES6 collection API.
* @alias remove
*/
delete(key: K): Map<K, V>;
remove(key: K): Map<K, V>;
/**
* Returns a new Map containing no keys or values.
*/
clear(): Map<K, V>;
/**
* Returns a new Map having updated the value at this `key` with the return
* value of calling `updater` with the existing value, or `notSetValue` if
* the key was not set. If called with only a single argument, `updater` is
* called with the Map itself.
*
* Equivalent to: `map.set(key, updater(map.get(key, notSetValue)))`.
*/
update(updater: (value: Map<K, V>) => Map<K, V>): Map<K, V>;
update(key: K, updater: (value: V) => V): Map<K, V>;
update(key: K, notSetValue: V, updater: (value: V) => V): Map<K, V>;
/**
* Returns a new Map resulting from merging the provided Iterables
* (or JS objects) into this Map. In other words, this takes each entry of
* each iterable and sets it on this Map.
*
* If any of the values provided to `merge` are not Iterable (would return
* false for `Immutable.isIterable`) then they are deeply converted via
* `Immutable.fromJS` before being merged. However, if the value is an
* Iterable but contains non-iterable JS objects or arrays, those nested
* values will be preserved.
*
* var x = Immutable.Map({a: 10, b: 20, c: 30});
* var y = Immutable.Map({b: 40, a: 50, d: 60});
* x.merge(y) // { a: 50, b: 40, c: 30, d: 60 }
* y.merge(x) // { b: 20, a: 10, d: 60, c: 30 }
*
*/
merge(...iterables: Iterable<K, V>[]): Map<K, V>;
merge(...iterables: {[key: string]: V}[]): Map<string, V>;
/**
* Like `merge()`, `mergeWith()` returns a new Map resulting from merging
* the provided Iterables (or JS objects) into this Map, but uses the
* `merger` function for dealing with conflicts.
*
* var x = Immutable.Map({a: 10, b: 20, c: 30});
* var y = Immutable.Map({b: 40, a: 50, d: 60});
* x.mergeWith((prev, next) => prev / next, y) // { a: 0.2, b: 0.5, c: 30, d: 60 }
* y.mergeWith((prev, next) => prev / next, x) // { b: 2, a: 5, d: 60, c: 30 }
*
*/
mergeWith(
merger: (previous: V, next: V) => V,
...iterables: Iterable<K, V>[]
): Map<K, V>;
mergeWith(
merger: (previous: V, next: V) => V,
...iterables: {[key: string]: V}[]
): Map<string, V>;
/**
* Like `merge()`, but when two Iterables conflict, it merges them as well,
* recursing deeply through the nested data.
*
* var x = Immutable.fromJS({a: { x: 10, y: 10 }, b: { x: 20, y: 50 } });
* var y = Immutable.fromJS({a: { x: 2 }, b: { y: 5 }, c: { z: 3 } });
* x.mergeDeep(y) // {a: { x: 2, y: 10 }, b: { x: 20, y: 5 }, c: { z: 3 } }
*
*/
mergeDeep(...iterables: Iterable<K, V>[]): Map<K, V>;
mergeDeep(...iterables: {[key: string]: V}[]): Map<string, V>;
/**
* Like `mergeDeep()`, but when two non-Iterables conflict, it uses the
* `merger` function to determine the resulting value.
*
* var x = Immutable.fromJS({a: { x: 10, y: 10 }, b: { x: 20, y: 50 } });
* var y = Immutable.fromJS({a: { x: 2 }, b: { y: 5 }, c: { z: 3 } });
* x.mergeDeepWith((prev, next) => prev / next, y)
* // {a: { x: 5, y: 10 }, b: { x: 20, y: 10 }, c: { z: 3 } }
*
*/
mergeDeepWith(
merger: (previous: V, next: V) => V,
...iterables: Iterable<K, V>[]
): Map<K, V>;
mergeDeepWith(
merger: (previous: V, next: V) => V,
...iterables: {[key: string]: V}[]
): Map<string, V>;
// Deep persistent changes
/**
* Returns a new Map having set `value` at this `keyPath`. If any keys in
* `keyPath` do not exist, a new immutable Map will be created at that key.
*/
setIn(keyPath: Array<any>, value: V): Map<K, V>;
setIn(KeyPath: Iterable<any, any>, value: V): Map<K, V>;
/**
* Returns a new Map having removed the value at this `keyPath`. If any keys
* in `keyPath` do not exist, a new immutable Map will be created at
* that key.
*
* @alias removeIn
*/
deleteIn(keyPath: Array<any>): Map<K, V>;
deleteIn(keyPath: Iterable<any, any>): Map<K, V>;
removeIn(keyPath: Array<any>): Map<K, V>;
removeIn(keyPath: Iterable<any, any>): Map<K, V>;
/**
* Returns a new Map having applied the `updater` to the entry found at the
* keyPath.
*
* If any keys in `keyPath` do not exist, new Immutable `Map`s will
* be created at those keys. If the `keyPath` does not already contain a
* value, the `updater` function will be called with `notSetValue`, if
* provided, otherwise `undefined`.
*
* var data = Immutable.fromJS({ a: { b: { c: 10 } } });
* data = data.updateIn(['a', 'b', 'c'], val => val * 2);
* // { a: { b: { c: 20 } } }
*
* If the `updater` function returns the same value it was called with, then
* no change will occur. This is still true if `notSetValue` is provided.
*
* var data1 = Immutable.fromJS({ a: { b: { c: 10 } } });
* data2 = data1.updateIn(['x', 'y', 'z'], 100, val => val);
* assert(data2 === data1);
*
*/
updateIn(
keyPath: Array<any>,
updater: (value: any) => any
): Map<K, V>;
updateIn(
keyPath: Array<any>,
notSetValue: any,
updater: (value: any) => any
): Map<K, V>;
updateIn(
keyPath: Iterable<any, any>,
updater: (value: any) => any
): Map<K, V>;
updateIn(
keyPath: Iterable<any, any>,
notSetValue: any,
updater: (value: any) => any
): Map<K, V>;
/**
* A combination of `updateIn` and `merge`, returning a new Map, but
* performing the merge at a point arrived at by following the keyPath.
* In other words, these two lines are equivalent:
*
* x.updateIn(['a', 'b', 'c'], abc => abc.merge(y));
* x.mergeIn(['a', 'b', 'c'], y);
*
*/
mergeIn(
keyPath: Iterable<any, any>,
...iterables: Iterable<K, V>[]
): Map<K, V>;
mergeIn(
keyPath: Array<any>,
...iterables: Iterable<K, V>[]
): Map<K, V>;
mergeIn(
keyPath: Array<any>,
...iterables: {[key: string]: V}[]
): Map<string, V>;
/**
* A combination of `updateIn` and `mergeDeep`, returning a new Map, but
* performing the deep merge at a point arrived at by following the keyPath.
* In other words, these two lines are equivalent:
*
* x.updateIn(['a', 'b', 'c'], abc => abc.mergeDeep(y));
* x.mergeDeepIn(['a', 'b', 'c'], y);
*
*/
mergeDeepIn(
keyPath: Iterable<any, any>,
...iterables: Iterable<K, V>[]
): Map<K, V>;
mergeDeepIn(
keyPath: Array<any>,
...iterables: Iterable<K, V>[]
): Map<K, V>;
mergeDeepIn(
keyPath: Array<any>,
...iterables: {[key: string]: V}[]
): Map<string, V>;
// Transient changes
/**
* Every time you call one of the above functions, a new immutable Map is
* created. If a pure function calls a number of these to produce a final
* return value, then a penalty on performance and memory has been paid by
* creating all of the intermediate immutable Maps.
*
* If you need to apply a series of mutations to produce a new immutable
* Map, `withMutations()` creates a temporary mutable copy of the Map which
* can apply mutations in a highly performant manner. In fact, this is
* exactly how complex mutations like `merge` are done.
*
* As an example, this results in the creation of 2, not 4, new Maps:
*
* var map1 = Immutable.Map();
* var map2 = map1.withMutations(map => {
* map.set('a', 1).set('b', 2).set('c', 3);
* });
* assert(map1.size === 0);
* assert(map2.size === 3);
*
*/
withMutations(mutator: (mutable: Map<K, V>) => any): Map<K, V>;
/**
* Another way to avoid creation of intermediate Immutable maps is to create
* a mutable copy of this collection. Mutable copies *always* return `this`,
* and thus shouldn't be used for equality. Your function should never return
* a mutable copy of a collection, only use it internally to create a new
* collection. If possible, use `withMutations` as it provides an easier to
* use API.
*
* Note: if the collection is already mutable, `asMutable` returns itself.
*/
asMutable(): Map<K, V>;
/**
* The yin to `asMutable`'s yang. Because it applies to mutable collections,
* this operation is *mutable* and returns itself. Once performed, the mutable
* copy has become immutable and can be safely returned from a function.
*/
asImmutable(): Map<K, V>;
}
/**
* A type of Map that has the additional guarantee that the iteration order of
* entries will be the order in which they were set().
*
* The iteration behavior of OrderedMap is the same as native ES6 Map and
* JavaScript Object.
*
* Note that `OrderedMap` are more expensive than non-ordered `Map` and may
* consume more memory. `OrderedMap#set` is amoratized O(log32 N), but not
* stable.
*/
declare class OrderedMap<K, V> extends Map<K, V> {
/**
* Creates a new Immutable OrderedMap.
*
* Created with the same key value pairs as the provided KeyedIterable or
* JavaScript Object or expects an Iterable of [K, V] tuple entries.
*
* The iteration order of key-value pairs provided to this constructor will
* be preserved in the OrderedMap.
*
* var newOrderedMap = OrderedMap({key: "value"});
* var newOrderedMap = OrderedMap([["key", "value"]]);
*
*/
static <K, V>(iter?: KeyedIterable<K, V>): Map<K, V>;
static <V>(obj?: {[key: string]: V}): Map<string, V>;
static <K, V>(iterator?: Iterator<[K,V]>): Map<K, V>;
static <K, V>(iterable?: Iterable<[K,V]>): Map<K, V>;
/**
* True if the provided value is an OrderedMap.
*/
static isOrderedMap(maybeOrderedMap: any): boolean;
}
/**
* A Collection of unique values with `O(log32 N)` adds and has.
*
* When iterating a Set, the entries will be (value, value) pairs. Iteration
* order of a Set is undefined, however is stable. Multiple iterations of the
* same Set will iterate in the same order.
*
* Set values, like Map keys, may be of any type. Equality is determined using
* `Immutable.is`, enabling Sets to uniquely include other Immutable
* collections, custom value types, and NaN.
*/
declare class Set<T> extends SetCollection<T> {
/**
* Create a new immutable Set containing the values of the provided
* iterable-like.
*/
static <T>(iter?: SetIterable<T>): Set<T>;
static <T>(iter?: IndexedIterable<T>): Set<T>;
static <K, V>(iter?: KeyedIterable<K, V>): Set<any>;
static <T>(iterator?: Iterator<T>): Set<T>;
static <T>(iterable?: Iterable<number, T>): Set<T>;
/**
* True if the provided value is a Set
*/
static isSet(maybeSet: any): boolean;
/**
* Creates a new Set containing `values`.
*/
static of<T>(...values: T[]): Set<T>;
/**
* `Set.fromKeys()` creates a new immutable Set containing the keys from
* this Iterable or JavaScript Object.
*/
static fromKeys<T>(iter: Iterable<T, any> | {[key: T]: any}): Set<T>;
// Persistent changes
/**
* Returns a new Set which also includes this value.
*/
add(value: T): Set<T>;
/**
* Returns a new Set which excludes this value.
*
* Note: `delete` cannot be safely used in IE8
* @alias remove
*/
delete(value: T): Set<T>;
remove(value: T): Set<T>;
/**
* Returns a new Set containing no values.
*/
clear(): Set<T>;
/**
* Returns a Set including any value from `iterables` that does not already
* exist in this Set.
* @alias merge
*/
union(...iterables: Iterable<any, T>[]): Set<T>;
union(...iterables: Array<T>[]): Set<T>;
merge(...iterables: Iterable<any, T>[]): Set<T>;
merge(...iterables: Array<T>[]): Set<T>;
/**
* Returns a Set which has removed any values not also contained
* within `iterables`.
*/
intersect(...iterables: Iterable<any, T>[]): Set<T>;
intersect(...iterables: Array<T>[]): Set<T>;
/**
* Returns a Set excluding any values contained within `iterables`.
*/
subtract(...iterables: Iterable<any, T>[]): Set<T>;
subtract(...iterables: Array<T>[]): Set<T>;
// Transient changes
/**
* @see `Map#withMutations`
*/
withMutations(mutator: (mutable: Set<T>) => any): Set<T>;
/**
* @see `Map#asMutable`
*/
asMutable(): Set<T>;
/**
* @see `Map#asImmutable`
*/
asImmutable(): Set<T>;
}
/**
* A type of Set that has the additional guarantee that the iteration order of
* values will be the order in which they were `add`ed.
*
* The iteration behavior of OrderedSet is the same as native ES6 Set.
*
* Note that `OrderedSet` are more expensive than non-ordered `Set` and may
* consume more memory. `OrderedSet#add` is amoratized O(log32 N), but not
* stable.
*/
declare class OrderedSet<T> extends Set<T> {
/**
* Create a new immutable OrderedSet containing the values of the provided
* iterable-like.
*/
static <T>(iter?: SetIterable<T>): OrderedSet<T>;
static <T>(iter?: IndexedIterable<T>): OrderedSet<T>;
static <K, V>(iter?: KeyedIterable<K, V>): OrderedSet<any>;
static <T>(iterator?: Iterator<T>): OrderedSet<T>;
static <T>(iterable?: Iterable<number, T>): OrderedSet<T>;
/**
* True if the provided value is an OrderedSet.
*/
static isOrderedSet(maybeOrderedSet: any): boolean;
/**
* Creates a new OrderedSet containing `values`.
*/
static of<T>(...values: T[]): OrderedSet<T>;
/**
* `OrderedSet.fromKeys()` creates a new immutable OrderedSet containing
* the keys from this Iterable or JavaScript Object.
*/
static fromKeys<T>(iter: Iterable<T, any> | {[key: T]: any}): OrderedSet<T>;
}
/**
* Stacks are indexed collections which support very efficient O(1) addition
* and removal from the front using `unshift(v)` and `shift()`.
*
* For familiarity, Stack also provides `push(v)`, `pop()`, and `peek()`, but
* be aware that they also operate on the front of the list, unlike List or
* a JavaScript Array.
*
* Note: `reverse()` or any inherent reverse traversal (`reduceRight`,
* `lastIndexOf`, etc.) is not efficient with a Stack.
*
* Stack is implemented with a Single-Linked List.
*/
declare class Stack<T> extends IndexedCollection<T> {
/**
* Create a new immutable Stack containing the values of the provided
* iterable-like.
*
* The iteration order of the provided iterable is preserved in the
* resulting `Stack`.
*/
static <T>(iter?: SetIterable<T>): Stack<T>;
static <T>(iter?: IndexedIterable<T>): Stack<T>;
static <K, V>(iter?: KeyedIterable<K, V>): Stack<any>;
static <T>(iterator?: Iterator<T>): Stack<T>;
static <T>(iterable?: Iterable<number, T>): Stack<T>;
/**
* True if the provided value is a Stack
*/
static isStack(maybeStack: any): boolean;
/**
* Creates a new Stack containing `values`.
*/
static of<T>(...values: T[]): Stack<T>;
// Reading values
/**
* Alias for `Stack.first()`.
*/
peek(): T;
// Persistent changes
/**
* Returns a new Stack with 0 size and no values.
*/
clear(): Stack<T>;
/**
* Returns a new Stack with the provided `values` prepended, shifting other
* values ahead to higher indices.
*
* This is very efficient for Stack.
*/
unshift(...values: T[]): Stack<T>;
/**
* Like `Stack#unshift`, but accepts a iterable rather than varargs.
*/
unshiftAll(iter: Iterable<any, T>): Stack<T>;
unshiftAll(iter: Array<T>): Stack<T>;
/**
* Returns a new Stack with a size ones less than this Stack, excluding
* the first item in this Stack, shifting all other values to a lower index.
*
* Note: this differs from `Array#shift` because it returns a new
* Stack rather than the removed value. Use `first()` or `peek()` to get the
* first value in this Stack.
*/
shift(): Stack<T>;
/**
* Alias for `Stack#unshift` and is not equivalent to `List#push`.
*/
push(...values: T[]): Stack<T>;
/**
* Alias for `Stack#unshiftAll`.
*/
pushAll(iter: Iterable<any, T>): Stack<T>;
pushAll(iter: Array<T>): Stack<T>;
/**
* Alias for `Stack#shift` and is not equivalent to `List#pop`.
*/
pop(): Stack<T>;
// Transient changes
/**
* @see `Map#withMutations`
*/
withMutations(mutator: (mutable: Stack<T>) => any): Stack<T>;
/**
* @see `Map#asMutable`
*/
asMutable(): Stack<T>;
/**
* @see `Map#asImmutable`
*/
asImmutable(): Stack<T>;
}
/**
* Creates a new Class which produces Record instances. A record is similar to
* a JS object, but enforce a specific set of allowed string keys, and have
* default values.
*
* var ABRecord = Record({a:1, b:2})
* var myRecord = new ABRecord({b:3})
*
* Records always have a value for the keys they define. `remove`ing a key
* from a record simply resets it to the default value for that key.
*
* myRecord.size // 2
* myRecord.get('a') // 1
* myRecord.get('b') // 3
* myRecordWithoutB = myRecord.remove('b')
* myRecordWithoutB.get('b') // 2
* myRecordWithoutB.size // 2
*
* Values provided to the constructor not found in the Record type will
* be ignored:
*
* var myRecord = new ABRecord({b:3, x:10})
* myRecord.get('x') // undefined
*
* Because Records have a known set of string keys, property get access works
* as expected, however property sets will throw an Error.
*
* Note: IE8 does not support property access. Only use `get()` when
* supporting IE8.
*
* myRecord.b // 3
* myRecord.b = 5 // throws Error
*
* Record Classes can be extended as well, allowing for custom methods on your
* Record. This is not a common pattern in functional environments, but is in
* many JS programs.
*
* Note: TypeScript does not support this type of subclassing.
*
* class ABRecord extends Record({a:1,b:2}) {
* getAB() {
* return this.a + this.b;
* }
* }
*
* var myRecord = new ABRecord(b:3)
* myRecord.getAB() // 4
*
*/
declare class Record {
// TODO (glevi) uncripple Record
static (defaultValues: {[key: string]: any}, name?: string): any;
constructor(values?: ?({[key: string]: any} | Iterable<string, any>)): void;
}
/**
* Represents a sequence of values, but may not be backed by a concrete data
* structure.
*
* **Seq is immutable** - Once a Seq is created, it cannot be
* changed, appended to, rearranged or otherwise modified. Instead, any
* mutative method called on a `Seq` will return a new `Seq`.
*
* **Seq is lazy** - Seq does as little work as necessary to respond to any
* method call. Values are often created during iteration, including implicit
* iteration when reducing or converting to a concrete data structure such as
* a `List` or JavaScript `Array`.
*
* For example, the following performs no work, because the resulting
* Seq's values are never iterated:
*
* var oddSquares = Immutable.Seq.of(1,2,3,4,5,6,7,8)
* .filter(x => x % 2).map(x => x * x);
*
* Once the Seq is used, it performs only the work necessary. In this
* example, no intermediate data structures are ever created, filter is only
* called three times, and map is only called twice:
*
* console.log(evenSquares.get(1)); // 9
*
* Seq allows for the efficient chaining of operations,
* allowing for the expression of logic that can otherwise be very tedious:
*
* Immutable.Seq({a:1, b:1, c:1})
* .flip().map(key => key.toUpperCase()).flip().toObject();
* // Map { A: 1, B: 1, C: 1 }
*
* As well as expressing logic that would otherwise be memory or time limited:
*
* Immutable.Range(1, Infinity)
* .skip(1000)
* .map(n => -n)
* .filter(n => n % 2 === 0)
* .take(2)
* .reduce((r, n) => r * n, 1);
* // 1006008
*
* Seq is often used to provide a rich collection API to JavaScript Object.
*
* Immutable.Seq({ x: 0, y: 1, z: 2 }).map(v => v * 2).toObject();
* // { x: 0, y: 2, z: 4 }
*/
declare interface Seq<K, V> extends Iterable<K, V> {
/**
* Creates a Seq.
*
* Returns a particular kind of `Seq` based on the input.
*
* * If a `Seq`, that same `Seq`.
* * If an `Iterable`, a `Seq` of the same kind (Keyed, Indexed, or Set).
* * If an Array-like, an `IndexedSeq`.
* * If an Object with an Iterator, an `IndexedSeq`.
* * If an Iterator, an `IndexedSeq`.
* * If an Object, a `KeyedSeq`.
*
*/
static <K, V>(iterable?: Iterable<K, V>): Seq<K, V>;
static <T>(iterator?: Iterator<T>): IndexedSeq<T>;
static <V>(obj?: {[key: string]: V}): KeyedSeq<string, V>;
/**
* True if `maybeSeq` is a Seq, it is not backed by a concrete
* structure such as Map, List, or Set.
*/
static isSeq(maybeSeq: any): boolean;
/**
* Returns a Seq of the values provided. Alias for `IndexedSeq.of()`.
*/
static of<T>(...values: T[]): Seq<any, T>;
/**
* Some Seqs can describe their size lazily. When this is the case,
* size will be an integer. Otherwise it will be undefined.
*
* For example, Seqs returned from `map()` or `reverse()`
* preserve the size of the original `Seq` while `filter()` does not.
*
* Note: `Range`, `Repeat` and `Seq`s made from `Array`s and `Object`s will
* always have a size.
*/
size: number;
// Force evaluation
/**
* Because Sequences are lazy and designed to be chained together, they do
* not cache their results. For example, this map function is called a total
* of 6 times, as each `join` iterates the Seq of three values.
*
* var squares = Seq.of(1,2,3).map(x => x * x);
* squares.join() + squares.join();
*
* If you know a `Seq` will be used multiple times, it may be more
* efficient to first cache it in memory. Here, the map function is called
* only 3 times.
*
* var squares = Seq.of(1,2,3).map(x => x * x).cacheResult();
* squares.join() + squares.join();
*
* Use this method judiciously, as it must fully evaluate a Seq which can be
* a burden on memory and possibly performance.
*
* Note: after calling `cacheResult`, a Seq will always have a `size`.
*/
cacheResult(): Seq<K, V>;
}
/**
* `Seq` which represents key-value pairs.
*/
declare interface KeyedSeq<K, V> extends Seq<K, V>, KeyedIterable<K, V> {
/**
* Always returns a KeyedSeq, if input is not keyed, expects an
* iterable of [K, V] tuples.
*/
static <K, V>(iterator?: Iterator<V>): KeyedSeq<K, V>;
static <K, V>(iterable?: KeyedIterable<K, V>): KeyedSeq<K, V>;
static <V>(obj?: {[key: string]: V}): KeyedSeq<string, V>;
/**
* Returns itself
*/
toSeq(): KeyedSeq<K, V>;
}
/**
* `Seq` which represents an ordered indexed list of values.
*/
declare interface IndexedSeq<T> extends Seq<number, T>, IndexedIterable<T> {
/**
* Always returns IndexedSeq, discarding associated keys and
* supplying incrementing indices.
*/
static <T>(seq?: IndexedIterable<T>): IndexedSeq<T>;
static <T>(seq?: SetIterable<T>): IndexedSeq<T>;
static <K, V>(seq?: KeyedIterable<K, V>): IndexedSeq<any>;
static <T>(iterator?: Iterator<T>): IndexedSeq<T>;
/**
* Provides an IndexedSeq of the values provided.
*/
static of<T>(...values: T[]): IndexedSeq<T>;
/**
* Returns itself
*/
toSeq(): IndexedSeq<T>;
}
/**
* `Seq` which represents a set of values.
*
* Because `Seq` are often lazy, `SetSeq` does not provide the same guarantee
* of value uniqueness as the concrete `Set`.
*/
declare interface SetSeq<T> extends Seq<T, T>, SetIterable<T> {
/**
* Always returns a SetSeq, discarding associated indices or keys.
*/
static <T>(seq?: SetIterable<T>): SetSeq<T>;
static <T>(seq?: IndexedIterable<T>): SetSeq<T>;
static <K, V>(seq: KeyedIterable<K, V>): SetSeq<any>;
static <T>(iterator?: Iterator<T>): SetSeq<T>;
/**
* Returns a SetSeq of the provided values
*/
static of<T>(...values: T[]): SetSeq<T>;
/**
* Returns itself
*/
toSeq(): /*this*/SetSeq<T>;
}
/**
* The `Iterable` is a set of (key, value) entries which can be iterated, and
* is the base class for all collections in `immutable`, allowing them to
* make use of all the Iterable methods (such as `map` and `filter`).
*
* Note: An iterable is always iterated in the same order, however that order
* may not always be well defined, as is the case for the `Map` and `Set`.
*/
declare interface Iterable<K, V> {
/**
* Creates an Iterable.
*
* The type of Iterable created is based on the input.
*
* * If an `Iterable`, that same `Iterable`.
* * If an Array-like, an `IndexedIterable`.
* * If an Object with an Iterator, an `IndexedIterable`.
* * If an Iterator, an `IndexedIterable`.
* * If an Object, a `KeyedIterable`.
*
* This methods forces the conversion of Objects and Strings to Iterables.
* If you want to ensure that a Iterable of one item is returned, use
* `Seq.of`.
*/
static <K, V>(iterable?: Iterable<K, V>): Iterable<K, V>;
static <V>(obj?: {[key: string]: V}): KeyedIterable<string, V>;
static <T>(iterator?: Iterator<T>): IndexedIterable<T>;
/**
* True if `maybeIterable` is an Iterable, or any of its subclasses.
*/
static isIterable(maybeIterable: any): boolean;
/**
* True if `maybeKeyed` is a KeyedIterable, or any of its subclasses.
*/
static isKeyed(maybeKeyed: any): boolean;
/**
* True if `maybeIndexed` is a IndexedIterable, or any of its subclasses.
*/
static isIndexed(maybeIndexed: any): boolean;
/**
* True if `maybeAssociative` is either a keyed or indexed Iterable.
*/
static isAssociative(maybeAssociative: any): boolean;
/**
* True if `maybeOrdered` is an Iterable where iteration order is well
* defined. True for IndexedIterable as well as OrderedMap and OrderedSet.
*/
static isOrdered(maybeOrdered: any): boolean;
// Value equality
/**
* True if this and the other Iterable have value equality, as defined
* by `Immutable.is()`.
*
* Note: This is equivalent to `Immutable.is(this, other)`, but provided to
* allow for chained expressions.
*/
equals(other: Iterable<K, V>): boolean;
/**
* Computes and returns the hashed identity for this Iterable.
*
* The `hashCode` of an Iterable is used to determine potential equality,
* and is used when adding this to a `Set` or as a key in a `Map`, enabling
* lookup via a different instance.
*
* var a = List.of(1, 2, 3);
* var b = List.of(1, 2, 3);
* assert(a !== b); // different instances
* var set = Set.of(a);
* assert(set.has(b) === true);
*
* If two values have the same `hashCode`, they are [not guaranteed
* to be equal][Hash Collision]. If two values have different `hashCode`s,
* they must not be equal.
*
* [Hash Collision]: http://en.wikipedia.org/wiki/Collision_(computer_science)
*/
hashCode(): number;
// Reading values
/**
* Returns the value associated with the provided key, or notSetValue if
* the Iterable does not contain this key.
*
* Note: it is possible a key may be associated with an `undefined` value,
* so if `notSetValue` is not provided and this method returns `undefined`,
* that does not guarantee the key was not found.
*/
get(key: K, notSetValue?: V): V;
/**
* True if a key exists within this `Iterable`.
*/
has(key: K): boolean;
/**
* True if a value exists within this `Iterable`.
*/
contains(value: V): boolean;
/**
* The first value in the Iterable.
*/
first(): V;
/**
* The last value in the Iterable.
*/
last(): V;
// Reading deep values
/**
* Returns the value found by following a path of keys or indices through
* nested Iterables.
*/
getIn(searchKeyPath: Array<any>, notSetValue?: any): any;
getIn(searchKeyPath: Iterable<any, any>, notSetValue?: any): any;
/**
* True if the result of following a path of keys or indices through nested
* Iterables results in a set value.
*/
hasIn(searchKeyPath: Array<any>, notSetValue?: any): boolean;
hasIn(searchKeyPath: Iterable<any, any>, notSetValue?: any): boolean;
// Conversion to JavaScript types
/**
* Deeply converts this Iterable to equivalent JS.
*
* `IndexedIterables`, and `SetIterables` become Arrays, while
* `KeyedIterables` become Objects.
*
* @alias toJSON
*/
toJS(): any;
/**
* Shallowly converts this iterable to an Array, discarding keys.
*/
toArray(): Array<V>;
/**
* Shallowly converts this Iterable to an Object.
*
* Throws if keys are not strings.
*/
toObject(): { [key: string]: V };
// Conversion to Collections
/**
* Converts this Iterable to a Map, Throws if keys are not hashable.
*
* Note: This is equivalent to `Map(this.toKeyedSeq())`, but provided
* for convenience and to allow for chained expressions.
*/
toMap(): Map<K, V>;
/**
* Converts this Iterable to a Map, maintaining the order of iteration.
*
* Note: This is equivalent to `OrderedMap(this.toKeyedSeq())`, but
* provided for convenience and to allow for chained expressions.
*/
toOrderedMap(): Map<K, V>;
/**
* Converts this Iterable to a Set, discarding keys. Throws if values
* are not hashable.
*
* Note: This is equivalent to `Set(this)`, but provided to allow for
* chained expressions.
*/
toSet(): Set<V>;
/**
* Converts this Iterable to a Set, maintaining the order of iteration and
* discarding keys.
*
* Note: This is equivalent to `OrderedSet(this.valueSeq())`, but provided
* for convenience and to allow for chained expressions.
*/
toOrderedSet(): Set<V>;
/**
* Converts this Iterable to a List, discarding keys.
*
* Note: This is equivalent to `List(this)`, but provided to allow
* for chained expressions.
*/
toList(): List<V>;
/**
* Converts this Iterable to a Stack, discarding keys. Throws if values
* are not hashable.
*
* Note: This is equivalent to `Stack(this)`, but provided to allow for
* chained expressions.
*/
toStack(): Stack<V>;
// Conversion to Seq
/**
* Converts this Iterable to a Seq of the same kind (indexed,
* keyed, or set).
*/
toSeq(): Seq<K, V>;
/**
* Returns a KeyedSeq from this Iterable where indices are treated as keys.
*
* This is useful if you want to operate on an
* IndexedIterable and preserve the [index, value] pairs.
*
* The returned Seq will have identical iteration order as
* this Iterable.
*
* Example:
*
* var indexedSeq = Immutable.Seq.of('A', 'B', 'C');
* indexedSeq.filter(v => v === 'B').toString() // Seq [ 'B' ]
* var keyedSeq = indexedSeq.toKeyedSeq();
* keyedSeq.filter(v => v === 'B').toString() // Seq { 1: 'B' }
*
*/
toKeyedSeq(): KeyedSeq<K, V>;
/**
* Returns an IndexedSeq of the values of this Iterable, discarding keys.
*/
toIndexedSeq(): IndexedSeq<V>;
/**
* Returns a SetSeq of the values of this Iterable, discarding keys.
*/
toSetSeq(): SetSeq<V>;
// Iterators
/**
* An iterator of this `Iterable`'s keys.
*/
keys(): Iterator<K>;
/**
* An iterator of this `Iterable`'s values.
*/
values(): Iterator<V>;
/**
* An iterator of this `Iterable`'s entries as `[key, value]` tuples.
*/
entries(): Iterator</*[K, V]*/Array<any>>;
// Iterables (Seq)
/**
* Returns a new IndexedSeq of the keys of this Iterable,
* discarding values.
*/
keySeq(): IndexedSeq<K>;
/**
* Returns an IndexedSeq of the values of this Iterable, discarding keys.
*/
valueSeq(): IndexedSeq<V>;
/**
* Returns a new IndexedSeq of [key, value] tuples.
*/
entrySeq(): IndexedSeq</*(K, V)*/Array<any>>;
// Sequence algorithms
/**
* Returns a new Iterable of the same type with values passed through a
* `mapper` function.
*
* Seq({ a: 1, b: 2 }).map(x => 10 * x)
* // Seq { a: 10, b: 20 }
*
*/
map<M>(
mapper: (value: V, key: K, iter: /*this*/Iterable<K, V>) => M,
context?: any
): /*this*/Iterable<K, M>;
/**
* Returns a new Iterable of the same type with only the entries for which
* the `predicate` function returns a truthy value.
*
* Seq({a:1,b:2,c:3,d:4}).filter(x => x % 2 === 0)
* // Seq { b: 2, d: 4 }
*
*/
filter(
predicate: (value: V, key: K, iter: /*this*/Iterable<K, V>) => any,
context?: any
): /*this*/Iterable<K, V>;
/**
* Returns a new Iterable of the same type with only the entries for which
* the `predicate` function returns a falsy value.
*
* Seq({a:1,b:2,c:3,d:4}).filterNot(x => x % 2 === 0)
* // Seq { a: 1, c: 3 }
*
*/
filterNot(
predicate: (value: V, key: K, iter: /*this*/Iterable<K, V>) => any,
context?: any
): /*this*/Iterable<K, V>;
/**
* Returns a new Iterable of the same type in reverse order.
*/
reverse(): /*this*/Iterable<K, V>;
/**
* Returns a new Iterable of the same type which contains the same entries,
* stably sorted by using a `comparator`.
*
* If a `comparator` is not provided, a default comparator uses `<` and `>`.
*
* `comparator(valueA, valueB)`:
*
* * Returns `0` if the elements should not be swapped.
* * Returns `-1` (or any negative number) if `valueA` comes before `valueB`
* * Returns `1` (or any positive number) if `valueA` comes after `valueB`
* * Is pure, i.e. it must always return the same value for the same pair
* of values.
*
* When sorting collections which have no defined order, their ordered
* equivalents will be returned. e.g. `map.sort()` returns OrderedMap.
*/
sort(comparator?: (valueA: V, valueB: V) => number): /*this*/Iterable<K, V>;
/**
* Like `sort`, but also accepts a `comparatorValueMapper` which allows for
* sorting by more sophisticated means:
*
* hitters.sortBy(hitter => hitter.avgHits);
*
*/
sortBy<C>(
comparatorValueMapper: (value: V, key: K, iter: /*this*/Iterable<K, V>) => C,
comparator?: (valueA: C, valueB: C) => number
): /*this*/Iterable<K, V>;
/**
* Returns a `KeyedIterable` of `KeyedIterables`, grouped by the return
* value of the `grouper` function.
*
* Note: This is always an eager operation.
*/
groupBy<G>(
grouper: (value: V, key: K, iter: /*this*/Iterable<K, V>) => G,
context?: any
): /*Map*/KeyedSeq<G, /*this*/Iterable<K, V>>;
// Side effects
/**
* The `sideEffect` is executed for every entry in the Iterable.
*
* Unlike `Array#forEach`, if any call of `sideEffect` returns
* `false`, the iteration will stop. Returns the number of entries iterated
* (including the last iteration which returned false).
*/
forEach(
sideEffect: (value: V, key: K, iter: /*this*/Iterable<K, V>) => any,
context?: any
): number;
// Creating subsets
/**
* Returns a new Iterable of the same type representing a portion of this
* Iterable from start up to but not including end.
*
* If begin is negative, it is offset from the end of the Iterable. e.g.
* `slice(-2)` returns a Iterable of the last two entries. If it is not
* provided the new Iterable will begin at the beginning of this Iterable.
*
* If end is negative, it is offset from the end of the Iterable. e.g.
* `slice(0, -1)` returns an Iterable of everything but the last entry. If
* it is not provided, the new Iterable will continue through the end of
* this Iterable.
*
* If the requested slice is equivalent to the current Iterable, then it
* will return itself.
*/
slice(begin?: number, end?: number): /*this*/Iterable<K, V>;
/**
* Returns a new Iterable of the same type containing all entries except
* the first.
*/
rest(): /*this*/Iterable<K, V>;
/**
* Returns a new Iterable of the same type containing all entries except
* the last.
*/
butLast(): /*this*/Iterable<K, V>;
/**
* Returns a new Iterable of the same type which excludes the first `amount`
* entries from this Iterable.
*/
skip(amount: number): /*this*/Iterable<K, V>;
/**
* Returns a new Iterable of the same type which excludes the last `amount`
* entries from this Iterable.
*/
skipLast(amount: number): /*this*/Iterable<K, V>;
/**
* Returns a new Iterable of the same type which contains entries starting
* from when `predicate` first returns false.
*
* Seq.of('dog','frog','cat','hat','god')
* .skipWhile(x => x.match(/g/))
* // Seq [ 'cat', 'hat', 'god' ]
*
*/
skipWhile(
predicate: (value: V, key: K, iter: /*this*/Iterable<K, V>) => boolean,
context?: any
): /*this*/Iterable<K, V>;
/**
* Returns a new Iterable of the same type which contains entries starting
* from when `predicate` first returns true.
*
* Seq.of('dog','frog','cat','hat','god')
* .skipUntil(x => x.match(/hat/))
* // Seq [ 'hat', 'god' ]
*
*/
skipUntil(
predicate: (value: V, key: K, iter: /*this*/Iterable<K, V>) => boolean,
context?: any
): /*this*/Iterable<K, V>;
/**
* Returns a new Iterable of the same type which contains the first `amount`
* entries from this Iterable.
*/
take(amount: number): /*this*/Iterable<K, V>;
/**
* Returns a new Iterable of the same type which contains the last `amount`
* entries from this Iterable.
*/
takeLast(amount: number): /*this*/Iterable<K, V>;
/**
* Returns a new Iterable of the same type which contains entries from this
* Iterable as long as the `predicate` returns true.
*
* Seq.of('dog','frog','cat','hat','god')
* .takeWhile(x => x.match(/o/))
* // Seq [ 'dog', 'frog' ]
*
*/
takeWhile(
predicate: (value: V, key: K, iter: /*this*/Iterable<K, V>) => boolean,
context?: any
): /*this*/Iterable<K, V>;
/**
* Returns a new Iterable of the same type which contains entries from this
* Iterable as long as the `predicate` returns false.
*
* Seq.of('dog','frog','cat','hat','god').takeUntil(x => x.match(/at/))
* // ['dog', 'frog']
*
*/
takeUntil(
predicate: (value: V, key: K, iter?: /*this*/Iterable<K, V>) => boolean,
context?: any
): /*this*/Iterable<K, V>;
// Combination
/**
* Returns a new Iterable of the same type with other values and
* iterable-like concatenated to this one.
*
* For Seqs, all entries will be present in
* the resulting iterable, even if they have the same key.
*/
concat(...valuesOrIterables: /*Array<Iterable<K, V>|V*/any[]): /*this*/Iterable<K, V>;
/**
* Flattens nested Iterables.
*
* Will deeply flatten the Iterable by default, returning an Iterable of the
* same type, but a `depth` can be provided in the form of a number or
* boolean (where true means to shallowly flatten one level). A depth of 0
* (or shallow: false) will deeply flatten.
*
* Flattens only others Iterable, not Arrays or Objects.
*
* Note: `flatten(true)` operates on Iterable<any, Iterable<K, V>> and
* returns Iterable<K, V>
*/
flatten(depth?: number): /*this*/Iterable<any, any>;
flatten(shallow?: boolean): /*this*/Iterable<any, any>;
/**
* Flat-maps the Iterable, returning an Iterable of the same type.
*
* Similar to `iter.map(...).flatten(true)`.
*/
flatMap<MK, MV>(
mapper: (value: V, key: K, iter: /*this*/Iterable<K, V>) => Iterable<MK, MV>,
context?: any
): /*this*/Iterable<MK, MV>;
flatMap<MK, MV>(
mapper: (value: V, key: K, iter: /*this*/Iterable<K, V>) => /*iterable-like*/any,
context?: any
): /*this*/Iterable<MK, MV>;
// Reducing a value
/**
* Reduces the Iterable to a value by calling the `reducer` for every entry
* in the Iterable and passing along the reduced value.
*
* If `initialReduction` is not provided, or is null, the first item in the
* Iterable will be used.
*
* @see `Array#reduce`.
*/
reduce<R>(
reducer: (reduction: R, value: V, key: K, iter: /*this*/Iterable<K, V>) => R,
initialReduction?: R,
context?: any
): R;
/**
* Reduces the Iterable in reverse (from the right side).
*
* Note: Similar to this.reverse().reduce(), and provided for parity
* with `Array#reduceRight`.
*/
reduceRight<R>(
reducer: (reduction: R, value: V, key: K, iter: /*this*/Iterable<K, V>) => R,
initialReduction?: R,
context?: any
): R;
/**
* True if `predicate` returns true for all entries in the Iterable.
*/
every(
predicate: (value: V, key: K, iter: /*this*/Iterable<K, V>) => boolean,
context?: any
): boolean;
/**
* True if `predicate` returns true for any entry in the Iterable.
*/
some(
predicate: (value: V, key: K, iter: /*this*/Iterable<K, V>) => boolean,
context?: any
): boolean;
/**
* Joins values together as a string, inserting a separator between each.
* The default separator is `","`.
*/
join(separator?: string): string;
/**
* Returns true if this Iterable contains no values.
*
* For some lazy `Seq`, `isEmpty` might need to iterate to determine
* emptiness. At most one iteration will occur.
*/
isEmpty(): boolean;
/**
* Returns the size of this Iterable.
*
* Regardless of if this Iterable can describe its size lazily (some Seqs
* cannot), this method will always return the correct size. E.g. it
* evaluates a lazy `Seq` if necessary.
*
* If `predicate` is provided, then this returns the count of entries in the
* Iterable for which the `predicate` returns true.
*/
count(): number;
count(
predicate: (value: V, key: K, iter: /*this*/Iterable<K, V>) => boolean,
context?: any
): number;
/**
* Returns a `KeyedSeq` of counts, grouped by the return value of
* the `grouper` function.
*
* Note: This is not a lazy operation.
*/
countBy<G>(
grouper: (value: V, key: K, iter: /*this*/Iterable<K, V>) => G,
context?: any
): Map<G, number>;
// Search for value
/**
* Returns the value for which the `predicate` returns true.
*/
find(
predicate: (value: V, key: K, iter: /*this*/Iterable<K, V>) => boolean,
context?: any,
notSetValue?: V
): V;
/**
* Returns the last value for which the `predicate` returns true.
*
* Note: `predicate` will be called for each entry in reverse.
*/
findLast(
predicate: (value: V, key: K, iter: /*this*/Iterable<K, V>) => boolean,
context?: any,
notSetValue?: V
): V;
/**
* Returns the maximum value in this collection. If any values are
* comparatively equivalent, the first one found will be returned.
*
* The `comparator` is used in the same way as `Iterable#sort`. If it is not
* provided, the default comparator is `>`.
*
* When two values are considered equivalent, the first encountered will be
* returned. Otherwise, `max` will operate independent of the order of input
* as long as the comparator is commutative. The default comparator `>` is
* commutative *only* when types do not differ.
*
* If `comparator` returns 0 and either value is NaN, undefined, or null,
* that value will be returned.
*/
max(comparator?: (valueA: V, valueB: V) => number): V;
/**
* Like `max`, but also accepts a `comparatorValueMapper` which allows for
* comparing by more sophisticated means:
*
* hitters.maxBy(hitter => hitter.avgHits);
*
*/
maxBy<C>(
comparatorValueMapper: (value: V, key: K, iter: /*this*/Iterable<K, V>) => C,
comparator?: (valueA: C, valueB: C) => number
): V;
/**
* Returns the maximum value in this collection. If any values are
* comparatively equivalent, the first one found will be returned.
*
* The `comparator` is used in the same way as `Iterable#sort`. If it is not
* provided, the default comparator is `<`.
*
* When two values are considered equivalent, the first encountered will be
* returned. Otherwise, `min` will operate independent of the order of input
* as long as the comparator is commutative. The default comparator `<` is
* commutative *only* when types do not differ.
*
* If `comparator` returns 0 and either value is NaN, undefined, or null,
* that value will be returned.
*/
min(comparator?: (valueA: V, valueB: V) => number): V;
/**
* Like `min`, but also accepts a `comparatorValueMapper` which allows for
* comparing by more sophisticated means:
*
* hitters.minBy(hitter => hitter.avgHits);
*
*/
minBy<C>(
comparatorValueMapper: (value: V, key: K, iter: /*this*/Iterable<K, V>) => C,
comparator?: (valueA: C, valueB: C) => number
): V;
// Comparison
/**
* True if `iter` contains every value in this Iterable.
*/
isSubset(iter: Iterable<any, V>): boolean;
isSubset(iter: Array<V>): boolean;
/**
* True if this Iterable contains every value in `iter`.
*/
isSuperset(iter: Iterable<any, V>): boolean;
isSuperset(iter: Array<V>): boolean;
/**
* Note: this is here as a convenience to work around an issue with
* TypeScript https://github.com/Microsoft/TypeScript/issues/285, but
* Iterable does not define `size`, instead `Seq` defines `size` as
* nullable number, and `Collection` defines `size` as always a number.
*
* @ignore
*/
size: number;
}
/**
* Keyed Iterables have discrete keys tied to each value.
*
* When iterating `KeyedIterable`, each iteration will yield a `[K, V]` tuple,
* in other words, `Iterable#entries` is the default iterator for Keyed
* Iterables.
*/
declare interface KeyedIterable<K, V> extends Iterable<K, V> {
/**
* Creates a KeyedIterable
*
* Similar to `Iterable()`, however it expects iterable-likes of [K, V]
* tuples if not constructed from a KeyedIterable or JS Object.
*/
static <K, V>(iter: KeyedIterable<K, V>): KeyedIterable<K, V>;
static <K, V>(iter: Iterable<any, /*[K,V]*/any>): KeyedIterable<K, V>;
static <K, V>(array: Array</*[K,V]*/any>): KeyedIterable<K, V>;
static <V>(obj: {[key: string]: V}): KeyedIterable<string, V>;
static <K, V>(iterator: Iterator</*[K,V]*/any>): KeyedIterable<K, V>;
static <K, V>(iterable: /*Iterable<[K,V]>*/Object): KeyedIterable<K, V>;
/**
* Returns KeyedSeq.
* @override
*/
toSeq(): KeyedSeq<K, V>;
// Sequence functions
/**
* Returns a new KeyedIterable of the same type where the keys and values
* have been flipped.
*
* Seq({ a: 'z', b: 'y' }).flip() // { z: 'a', y: 'b' }
*
*/
flip(): /*this*/KeyedIterable<V, K>;
/**
* Returns a new KeyedIterable of the same type with keys passed through a
* `mapper` function.
*
* Seq({ a: 1, b: 2 })
* .mapKeys(x => x.toUpperCase())
* // Seq { A: 1, B: 2 }
*
*/
mapKeys<M>(
mapper: (key: K, value: V, iter: /*this*/KeyedIterable<K, V>) => M,
context?: any
): /*this*/KeyedIterable<M, V>;
/**
* Returns a new KeyedIterable of the same type with entries
* ([key, value] tuples) passed through a `mapper` function.
*
* Seq({ a: 1, b: 2 })
* .mapEntries(([k, v]) => [k.toUpperCase(), v * 2])
* // Seq { A: 2, B: 4 }
*
*/
mapEntries<KM, VM>(
mapper: (
entry: /*(K, V)*/Array<any>,
index: number,
iter: /*this*/KeyedIterable<K, V>
) => /*[KM, VM]*/Array<any>,
context?: any
): /*this*/KeyedIterable<KM, VM>;
// Search for value
/**
* Returns the key associated with the search value, or undefined.
*/
keyOf(searchValue: V): K;
/**
* Returns the last key associated with the search value, or undefined.
*/
lastKeyOf(searchValue: V): K;
/**
* Returns the key for which the `predicate` returns true.
*/
findKey(
predicate: (value: V, key: K, iter: /*this*/KeyedIterable<K, V>) => boolean,
context?: any
): K;
/**
* Returns the last key for which the `predicate` returns true.
*
* Note: `predicate` will be called for each entry in reverse.
*/
findLastKey(
predicate: (value: V, key: K, iter: /*this*/KeyedIterable<K, V>) => boolean,
context?: any
): K;
}
/**
* Indexed Iterables have incrementing numeric keys. They exhibit
* slightly different behavior than `KeyedIterable` for some methods in order
* to better mirror the behavior of JavaScript's `Array`, and add methods
* which do not make sense on non-indexed Iterables such as `indexOf`.
*
* Unlike JavaScript arrays, `IndexedIterable`s are always dense. "Unset"
* indices and `undefined` indices are indistinguishable, and all indices from
* 0 to `size` are visited when iterated.
*
* All IndexedIterable methods return re-indexed Iterables. In other words,
* indices always start at 0 and increment until size. If you wish to
* preserve indices, using them as keys, convert to a KeyedIterable by calling
* `toKeyedSeq`.
*/
declare interface IndexedIterable<T> extends Iterable<number, T> {
/**
* Creates a new IndexedIterable.
*/
static <T>(iter?: IndexedIterable<T>): IndexedIterable<T>;
static <T>(iter?: SetIterable<T>): IndexedIterable<T>;
static <K, V>(iter: KeyedIterable<K, V>): IndexedIterable<any>;
static <T>(iterator?: Iterator<T>): IndexedIterable<T>;
// Reading values
/**
* Returns the value associated with the provided index, or notSetValue if
* the index is beyond the bounds of the Iterable.
*
* `index` may be a negative number, which indexes back from the end of the
* Iterable. `s.get(-1)` gets the last item in the Iterable.
*/
get(index: number, notSetValue?: T): T;
// Conversion to Seq
/**
* Returns IndexedSeq.
* @override
*/
toSeq(): IndexedSeq<T>;
/**
* If this is an iterable of [key, value] entry tuples, it will return a
* KeyedSeq of those entries.
*/
fromEntrySeq(): KeyedSeq<any, any>;
// Combination
/**
* Returns an Iterable of the same type with `separator` between each item
* in this Iterable.
*/
interpose(separator: T): /*this*/IndexedIterable<T>;
/**
* Returns an Iterable of the same type with the provided `iterables`
* interleaved into this iterable.
*
* The resulting Iterable contains the first item from each, then the
* second from each, etc.
*
* I.Seq.of(1,2,3).interleave(I.Seq.of('A','B','C'))
* // Seq [ 1, 'A', 2, 'B', 3, 'C' ]
*
* The shortest Iterable stops interleave.
*
* I.Seq.of(1,2,3).interleave(
* I.Seq.of('A','B'),
* I.Seq.of('X','Y','Z')
* )
* // Seq [ 1, 'A', 'X', 2, 'B', 'Y' ]
*/
interleave(...iterables: Array<Iterable<any, T>>): /*this*/IndexedIterable<T>;
/**
* Splice returns a new indexed Iterable by replacing a region of this
* Iterable with new values. If values are not provided, it only skips the
* region to be removed.
*
* `index` may be a negative number, which indexes back from the end of the
* Iterable. `s.splice(-2)` splices after the second to last item.
*
* Seq(['a','b','c','d']).splice(1, 2, 'q', 'r', 's')
* // Seq ['a', 'q', 'r', 's', 'd']
*
*/
splice(
index: number,
removeNum: number,
...values: /*Array<IndexedIterable<T> | T>*/any[]
): /*this*/IndexedIterable<T>;
/**
* Returns an Iterable of the same type "zipped" with the provided
* iterables.
*
* Like `zipWith`, but using the default `zipper`: creating an `Array`.
*
* var a = Seq.of(1, 2, 3);
* var b = Seq.of(4, 5, 6);
* var c = a.zip(b); // Seq [ [ 1, 4 ], [ 2, 5 ], [ 3, 6 ] ]
*
*/
zip(...iterables: Array<Iterable<any, any>>): /*this*/IndexedIterable<any>;
/**
* Returns an Iterable of the same type "zipped" with the provided
* iterables by using a custom `zipper` function.
*
* Like `zipWith`, but using the default `zipper`: creating an `Array`.
*
* var a = Seq.of(1, 2, 3);
* var b = Seq.of(4, 5, 6);
* var c = a.zip(b); // Seq [ [ 1, 4 ], [ 2, 5 ], [ 3, 6 ] ]
*
*/
zipWith<U, Z>(
zipper: (value: T, otherValue: U) => Z,
otherIterable: Iterable<any, U>
): IndexedIterable<Z>;
zipWith<U, V, Z>(
zipper: (value: T, otherValue: U, thirdValue: V) => Z,
otherIterable: Iterable<any, U>,
thirdIterable: Iterable<any, V>
): IndexedIterable<Z>;
zipWith<Z>(
zipper: (...any: Array<any>) => Z,
...iterables: Array<Iterable<any, any>>
): IndexedIterable<Z>;
// Search for value
/**
* Returns the first index at which a given value can be found in the
* Iterable, or -1 if it is not present.
*/
indexOf(searchValue: T): number;
/**
* Returns the last index at which a given value can be found in the
* Iterable, or -1 if it is not present.
*/
lastIndexOf(searchValue: T): number;
/**
* Returns the first index in the Iterable where a value satisfies the
* provided predicate function. Otherwise -1 is returned.
*/
findIndex(
predicate: (value: T, index: number, iter: /*this*/IndexedIterable<T>) => boolean,
context?: any
): number;
/**
* Returns the last index in the Iterable where a value satisfies the
* provided predicate function. Otherwise -1 is returned.
*/
findLastIndex(
predicate: (value: T, index: number, iter: /*this*/IndexedIterable<T>) => boolean,
context?: any
): number;
}
/**
* Set Iterables only represent values. They have no associated keys or
* indices. Duplicate values are possible in SetSeqs, however the
* concrete `Set` does not allow duplicate values.
*
* Iterable methods on SetIterable such as `map` and `forEach` will provide
* the value as both the first and second arguments to the provided function.
*
* var seq = SetSeq.of('A', 'B', 'C');
* assert.equal(seq.every((v, k) => v === k), true);
*
*/
declare interface SetIterable<T> extends Iterable<T, T> {
/**
* Similar to `Iterable()`, but always returns a SetIterable.
*/
static <T>(iterator?: Iterator<T>): SetIterable<T>;
static <T>(iter?: SetIterable<T>): SetIterable<T>;
static <T>(iter?: IndexedIterable<T>): SetIterable<T>;
static <K, V>(iter: KeyedIterable<K, V>): SetIterable<any>;
/**
* Returns SetSeq.
* @override
*/
toSeq(): SetSeq<T>;
}
/**
* Collection is the abstract base class for concrete data structures. It
* cannot be constructed directly.
*
* Implementations should extend one of the subclasses, `KeyedCollection`,
* `IndexedCollection`, or `SetCollection`.
*/
declare interface Collection<K, V> extends Iterable<K, V> {
/**
* All collections maintain their current `size` as an integer.
*/
size: number;
}
/**
* `Collection` which represents key-value pairs.
*/
declare interface KeyedCollection<K, V> extends Collection<K, V>, KeyedIterable<K, V> {
/**
* Returns KeyedSeq.
* @override
*/
toSeq(): KeyedSeq<K, V>;
}
/**
* `Collection` which represents ordered indexed values.
*/
declare interface IndexedCollection<T> extends Collection<number, T>, IndexedIterable<T> {
/**
* Returns IndexedSeq.
* @override
*/
toSeq(): IndexedSeq<T>;
}
/**
* `Collection` which represents values, unassociated with keys or indices.
*
* `SetCollection` implementations should guarantee value uniqueness.
*/
declare interface SetCollection<T> extends Collection<T, T>, SetIterable<T> {
/**
* Returns SetSeq.
* @override
*/
toSeq(): SetSeq<T>;
}
/**
* Returns a IndexedSeq of numbers from `start` (inclusive) to `end`
* (exclusive), by `step`, where `start` defaults to 0, `step` to 1, and `end` to
* infinity. When `start` is equal to `end`, returns empty range.
*
* Range() // [0,1,2,3,...]
* Range(10) // [10,11,12,13,...]
* Range(10,15) // [10,11,12,13,14]
* Range(10,30,5) // [10,15,20,25]
* Range(30,10,5) // [30,25,20,15]
* Range(30,30,5) // []
*
*/
declare function Range(start?: number, end?: number, step?: number): IndexedSeq<number>;
/**
* Returns a IndexedSeq of `value` repeated `times` times. When `times` is
* not defined, returns an infinite `Seq` of `value`.
*
* Repeat('foo') // ['foo','foo','foo',...]
* Repeat('bar',4) // ['bar','bar','bar','bar']
*
*/
declare function Repeat<T>(value: T, times?: number): IndexedSeq<T>;
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment