Created
August 23, 2017 13:43
-
-
Save bowbowbow/1568523f28a433307ca00ff47fdd2a95 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#include <cstdio> | |
#include <iostream> | |
#include <vector> | |
#include <map> | |
#include <set> | |
#include <string> | |
#include <algorithm> | |
#include <ctime> | |
#include <fstream> | |
#include <cmath> | |
#include <functional> | |
#include <random> | |
#include <ctime> | |
using namespace std; | |
#define mp make_pair | |
#define ll long long | |
#define MAT vector<vector<double> > | |
#define MAT2 vector<vector<pair<int, int> > > | |
mt19937 engine(time(NULL)); | |
uniform_int_distribution<> dist(1, 4); | |
auto gen = bind(dist, engine); | |
struct PinTrust { | |
int TargetUser, U; | |
double alpha, beta, epsilon, RF; | |
MAT Belief, BeliefScore;//prior belief, final belief score | |
MAT2 adj; | |
// 0:postive, 1:negative, 2:reverse positive, 3: reverse negative | |
MAT propagationMatrix; | |
//for each user, <trust,distrust> score | |
MAT Globalmsg; | |
map<pair<int, int>, int> Trust; | |
map<pair<int, int>, int> DisTrust; | |
map<pair<int, int>, vector<int> > Rating; | |
PinTrust(double alpha, double beta, double epsilon, double RF, int U, int TargetUser) { | |
this->alpha = alpha; | |
this->beta = beta; | |
this->epsilon = epsilon; | |
this->RF = RF; | |
this->U = U; | |
this->TargetUser = TargetUser; | |
MakeBeliefScore(U, 2); | |
adj.resize(U); | |
} | |
void ChangeFactor(double alpha, double beta, double epsilon, double RF) { | |
this->alpha = alpha; | |
this->beta = beta; | |
this->epsilon = epsilon; | |
this->RF = RF; | |
MakeBeliefScore(U, 2); | |
adj.clear(); | |
adj.resize(U); | |
} | |
void InputTrust(int u, int v) { | |
Trust[mp(u, v)] = 1; | |
} | |
void InputDisTrust(int u, int v) { | |
DisTrust[mp(u, v)] = 1; | |
} | |
void InputRating(int u, int v, int R) { | |
Rating[mp(u, v)].push_back(R); | |
} | |
void MakeBeliefScore(int U, int S) { | |
Globalmsg.clear(); | |
Globalmsg.resize(U); | |
for (int i = 0; i < U; i++) { | |
Globalmsg[i].push_back(1); | |
Globalmsg[i].push_back(1); | |
} | |
Belief.clear(); | |
Belief.resize(U); | |
for (int i = 0; i < Belief.size(); i++)Belief[i].resize(S); | |
for (int i = 0; i < Belief.size(); i++) { | |
Belief[i][0] = 0.5 + beta; | |
Belief[i][1] = 0.5 - beta; | |
} | |
Belief[TargetUser][0] = 0.5 + alpha; | |
Belief[TargetUser][1] = 0.5 - alpha; | |
} | |
void MakeEdge0() { | |
//P[i][j] = Trust[i][j] or Rating[i][j] | |
map<pair<int, int>, int> tmpadj; | |
for (auto &it : Trust) { | |
int u = it.first.first; | |
int v = it.first.second; | |
tmpadj[mp(u, v)] = 1; | |
} | |
for (auto &it : Rating) { | |
int u = it.first.first; | |
int v = it.first.second; | |
tmpadj[mp(u, v)] = 1; | |
} | |
for (auto &it : tmpadj) { | |
int u = it.first.first; | |
int v = it.first.second; | |
adj[u].push_back({ v, 0 }); | |
adj[v].push_back({ u, 2 });////reverse positive | |
} | |
} | |
void MakeEdge1() { | |
for (auto &it : DisTrust) { | |
int u = it.first.first; | |
int v = it.first.second; | |
adj[u].push_back({ v, 1 }); | |
adj[v].push_back({ u, 3 });//reverse negative | |
} | |
} | |
double GetFR(int u, int v) { | |
int Ratingcnt = 0; | |
double Ratingavr = 0; | |
if (Rating.find(mp(u, v)) != Rating.end()) { | |
Ratingcnt = (int)Rating[mp(u, v)].size(); | |
auto tmp = Rating[mp(u, v)]; | |
for (int i = 0; i < tmp.size(); i++) { | |
Ratingavr += tmp[i]; | |
} | |
Ratingavr /= (double)Ratingcnt + (1e-9); | |
} | |
if (Ratingcnt == 0) { | |
return 0; | |
} | |
if (Ratingcnt >= 64) { | |
if (Ratingavr <= 3) { | |
return 0; | |
} | |
if (Ratingcnt <= 127)return 0.75; | |
if (Ratingcnt <= 255)return 8.0; | |
if (Ratingcnt <= 511)return 0.85; | |
return 0.85; | |
} | |
if (Ratingcnt == 1) { | |
if (Ratingavr <= 3)return 0.01; | |
return 0.05; | |
} | |
else if (Ratingcnt <= 3) { | |
if (Ratingavr <= 3)return 0.01; | |
return 0.1; | |
} | |
else if (Ratingcnt <= 7) { | |
if (Ratingavr <= 3)return 0.01; | |
return 0.3; | |
} | |
else if (Ratingcnt <= 15) { | |
if (Ratingavr <= 3)return 0.02; | |
return 0.4; | |
} | |
else if (Ratingcnt <= 31) { | |
if (Ratingavr <= 3)return 0.03; | |
return 0.55; | |
} | |
else if (Ratingcnt <= 63) { | |
if (Ratingavr <= 3)return 0.02; | |
return 0.7; | |
} | |
return 0; | |
} | |
//source -> destination | |
MAT MakePropagationMatrix0(int u, int v) { | |
propagationMatrix.clear(); | |
propagationMatrix.resize(2); | |
for (int i = 0; i < 2; i++)propagationMatrix[i].resize(2); | |
propagationMatrix[0][0] = propagationMatrix[1][1] = 0.5 + epsilon*((double)Trust[mp(u, v)] + GetFR(u, v)); | |
propagationMatrix[1][0] = propagationMatrix[0][1] = 0.5 - epsilon*((double)Trust[mp(u, v)] + GetFR(u, v)); | |
return propagationMatrix; | |
} | |
MAT MakePropagationMatrix1(int u, int v) { | |
propagationMatrix.clear(); | |
propagationMatrix.resize(2); | |
for (int i = 0; i < 2; i++)propagationMatrix[i].resize(2); | |
propagationMatrix[0][0] = propagationMatrix[1][1] = 0.5 - epsilon; | |
propagationMatrix[1][0] = propagationMatrix[0][1] = 0.5 + epsilon; | |
return propagationMatrix; | |
} | |
MAT MakePropagationMatrix2(int u, int v) { | |
propagationMatrix.clear(); | |
propagationMatrix.resize(2); | |
for (int i = 0; i < 2; i++)propagationMatrix[i].resize(2); | |
propagationMatrix[0][0] = propagationMatrix[1][1] = 0.5 + epsilon*((double)Trust[mp(u, v)] + GetFR(u, v))*RF; | |
propagationMatrix[1][0] = propagationMatrix[0][1] = 0.5 - epsilon*((double)Trust[mp(u, v)] + GetFR(u, v))*RF; | |
return propagationMatrix; | |
} | |
MAT MakePropagationMatrix3(int u, int v) { | |
propagationMatrix.clear(); | |
propagationMatrix.resize(2); | |
for (int i = 0; i < 2; i++)propagationMatrix[i].resize(2); | |
propagationMatrix[0][0] = propagationMatrix[1][1] = 0.5 - epsilon*RF; | |
propagationMatrix[1][0] = propagationMatrix[0][1] = 0.5 + epsilon*RF; | |
return propagationMatrix; | |
} | |
MAT newMatrix(int U, int S) { | |
MAT ret = vector<vector<double > >(U, vector<double>(S, 1)); | |
return ret; | |
} | |
vector<double> newMessage(int S) { | |
vector<double> ret(S, 1); | |
return ret; | |
} | |
// flag == what adj matrix(P, N, PR, NR) I have. | |
vector<double> PropagateMessage(int u, int v, vector<double>& msgvalue, int S, int flag) { | |
vector<double> msg = newMessage(S); | |
MAT psi; | |
if (flag == 0)psi = MakePropagationMatrix0(u, v); | |
else if (flag == 1)psi = MakePropagationMatrix1(u, v); | |
else if (flag == 2)psi = MakePropagationMatrix2(u, v);//!!!!!reverse edge자체를 반대로 넣어서 | |
else if (flag == 3)psi = MakePropagationMatrix3(u, v); | |
for (int p = 0; p < S; p++) { | |
double sum = 0; | |
for (int q = 0; q < S; q++) { | |
sum += Belief[u][q] * psi[q][p] * msgvalue[q]; | |
} | |
msg[p] = sum; | |
} | |
return msg; | |
} | |
void NormalizeMessage(vector<double>& msg, int S) { | |
double sum = 0; | |
for (int i = 0; i < S; i++) { | |
sum += msg[i]; | |
} | |
for (int i = 0; i < S; i++) { | |
msg[i] = msg[i] / sum; | |
} | |
} | |
void run() { | |
//To erase reciprocal, erase type 2, 3 edge inside these func. | |
MakeEdge0(); | |
MakeEdge1(); | |
//MAT MSG = newMatrix(U, 2); | |
map<pair<int, int>, vector<double> > MSG; | |
//while not converged | |
for (int ite = 0; ite < 10; ite++) { | |
for (int i = 0; i < U; i++) { | |
vector<double> msg = newMessage(2); | |
for (int j = 0; j < adj[i].size(); j++) { | |
int k = adj[i][j].first; // neighbor | |
for (int di = 0; di < 2; di++) { | |
if (MSG.find(mp(k, i)) == MSG.end()) { | |
MSG[mp(k, i)].push_back(1.0); | |
MSG[mp(k, i)].push_back(1.0); | |
} | |
// msg[di] *= MSG[mp(k, i)][di]; | |
msg[di] += log(MSG[mp(k, i)][di]); | |
} | |
} | |
// 로그 때문에 추가 | |
for (int di = 0; di < 2; di++) { | |
msg[di] = pow(10, msg[di]); | |
} | |
for (int j = 0; j < adj[i].size(); j++) { | |
int k = adj[i][j].first; // neighbor | |
int type = adj[i][j].second; | |
vector<double> msg_divided; | |
msg_divided = newMessage(2); | |
for (int p = 0; p < 2; p++) { | |
msg_divided[p] = msg[p]; | |
if (MSG[mp(k, i)][p] < 1e-10) continue; | |
msg_divided[p] = msg[p] / MSG[mp(k, i)][p]; | |
//너무 작으면 propagate할때 작은 값이 곱해져서 -nan나오는걸 방지 | |
if (msg_divided[p] < 1e-10)msg_divided[p] = 1e-10; | |
} | |
MSG[mp(i, k)] = PropagateMessage(i, k, msg_divided, 2, type); | |
NormalizeMessage(MSG[mp(i, k)], 2); | |
} | |
} | |
} | |
// nomalize 되기 전 최종 belif score를 여기서 계산 함 | |
for (int i = 0; i < U; i++) { | |
double p = 0, q = 0; | |
for (int j = 0; j < adj[i].size(); j++) { | |
int neighbor = adj[i][j].first; | |
//multiply message | |
p += log(MSG[mp(neighbor, i)][0]); | |
q += log(MSG[mp(neighbor, i)][1]); | |
} | |
p += log(Belief[i][0]); | |
q += log(Belief[i][1]); | |
double minV = min(p, q); | |
p -= minV; | |
q -= minV; | |
p = pow(10, p); | |
q = pow(10, q); | |
Globalmsg[i][0] = p / (p + q); | |
Globalmsg[i][1] = q / (p + q); | |
// BigDecimal P("1"), Q("1"); | |
// double p = 0, q = 0; | |
// for (int j = 0; j < adj[i].size(); j++) { | |
// int neighbor = adj[i][j].first; | |
// //multiply message | |
// P *= MSG[mp(neighbor, i)][0]; | |
// Q *= MSG[mp(neighbor, i)][1]; | |
// } | |
// P *= Belief[i][0]; | |
// Q *= Belief[i][1]; | |
// | |
// BigDecimal i0 = P / (P + Q); | |
// BigDecimal i1 = Q / (P + Q); | |
// | |
// Globalmsg[i][0] = i0.toDouble(); | |
// Globalmsg[i][1] = i1.toDouble(); | |
// | |
} | |
} | |
void RunAll() { | |
run(); | |
BeliefScore.resize(U); | |
for (int i = 0; i < U; i++) { | |
BeliefScore[i].resize(2); | |
} | |
for (int i = 0; i < U; i++) { | |
double sum = 0; | |
for (int di = 0; di < 2; di++) { | |
sum += Globalmsg[i][di]; | |
} | |
for (int di = 0; di < 2; di++) { | |
Globalmsg[i][di] /= sum; | |
} | |
for (int di = 0; di < 2; di++) { | |
BeliefScore[i][di] = Globalmsg[i][di]; | |
} | |
} | |
} | |
}; | |
double alpha = 1e-2; | |
double beta = 1e-5; | |
double epsilon = 0.005; | |
double RF = 0.1; | |
int usernum = 10; | |
int targetUser = 0; | |
int main() { | |
//freopen("soc-sign-epinions.txt", "r", stdin); | |
//freopen("soc-sign-epinions_output_log.txt", "w", stdout); | |
freopen("user_user_matrix.txt", "r", stdin); | |
clock_t start; | |
double duration; | |
start = clock(); | |
int M; // 간선 개수 | |
targetUser = 5332; M = 841372; usernum = 233432; | |
PinTrust pinTrust(alpha, beta, epsilon, RF, usernum, targetUser); | |
int u, v, trust, distrust, rating; | |
int flag = 0; | |
set<int> cut, alive;; | |
while (!( | |
cin >> u >> v >> trust >> rating).eof()) { | |
if (u == targetUser && trust == 1) { | |
int key = gen(); | |
if (key == 1) { | |
cut.insert(v); | |
continue; | |
} | |
alive.insert(v); | |
} | |
if (trust == 1) | |
pinTrust.InputTrust(u, v); | |
else if (trust == -1) { | |
pinTrust.InputDisTrust(u, v); | |
} | |
else { | |
pinTrust.InputRating(u, v, rating); | |
} | |
} | |
cout << "input ok" << endl; | |
pinTrust.RunAll(); | |
// belifScore 출력 | |
vector<pair<double, pair<double, int> > > output; | |
for (int i = 0; i<usernum; i++) { | |
output.push_back(mp(-pinTrust.BeliefScore[i][0], mp(pinTrust.BeliefScore[i][1], i))); | |
} | |
sort(output.begin(), output.end()); | |
int hit = 0, knum = 0; | |
ofstream out("myout.txt"); | |
for (int i = 0; i < output.size(); i++) { | |
double TS = -output[i].first; | |
double DS = output[i].second.first; | |
int uu = output[i].second.second; | |
if (cut.find(uu) != cut.end())++hit, ++knum; | |
else if (alive.find(uu) != alive.end()) { | |
++knum; | |
} | |
if (i == 27 || i == 50 || i == 100) { | |
out << "누적 개수 : " << i << " 찾은 원래 정보개수 : " << knum << " 회복 개수: " << hit << endl; | |
} | |
if (knum == 27) { | |
cout << "누적 개수 : " << i << " 찾은 원래 정보개수 : " << knum << " 회복 개수 : " << hit << endl; | |
break; | |
} | |
} | |
/* | |
int topK = 100; | |
for (int i = 0; i < topK; i++) { | |
double TS = -output[i].first; | |
double DS = output[i].second.first; | |
out << "user " << output[i].second.second | |
<< " : " << "( " << TS << ", " << DS << " )" << endl; | |
} | |
*/ | |
duration = (std::clock() - start) / (double)CLOCKS_PER_SEC; | |
cout << "duration: " << duration << endl; | |
return 0; | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment