Created
August 21, 2019 16:05
-
-
Save bowbowbow/4e19cdcb9a238f023b6e9da3f811bdb3 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Convolutional neural network (two convolutional layers) | |
class ConvNet(nn.Module): | |
def __init__(self, hidden_size=200): | |
super(ConvNet, self).__init__() | |
self.hidden_size = hidden_size | |
self.layer1 = nn.Sequential( | |
nn.Conv1d(34, 68, kernel_size=5, stride=1, padding=2), | |
nn.BatchNorm1d(68), | |
nn.CELU(), | |
nn.MaxPool1d(kernel_size=5, stride=2), | |
) | |
self.layer2 = nn.Sequential( | |
nn.Conv1d(68, 128, kernel_size=5, stride=1, padding=2), | |
nn.BatchNorm1d(128), | |
nn.CELU(), | |
nn.MaxPool1d(kernel_size=5, stride=2), | |
) | |
self.layer3 = nn.Sequential( | |
nn.Conv1d(128, 256, kernel_size=5, stride=1, padding=2), | |
nn.BatchNorm1d(256), | |
nn.CELU(), | |
nn.MaxPool1d(kernel_size=5, stride=2), | |
nn.Dropout(0.5), | |
) | |
self.fc = nn.Sequential( | |
nn.Linear(15104, 6000), | |
nn.CELU(), | |
nn.Linear(6000, 2000), | |
nn.Linear(2000, self.hidden_size), | |
nn.CELU(), | |
) | |
def forward(self, x): | |
out = self.layer1(x) | |
out = self.layer2(out) | |
out = self.layer3(out) | |
out = out.reshape(out.size(0), -1) | |
out = self.fc(out) | |
return out | |
class BertNet(nn.Module): | |
def __init__(self, finetuning=True, hidden_size=200): | |
super().__init__() | |
self.bert = BertModel.from_pretrained('bert-base-uncased') | |
self.bert_output_size = 768 | |
self.hidden_size = hidden_size | |
self.rnn = nn.LSTM(input_size=self.bert_output_size, hidden_size=self.hidden_size, batch_first=True, bidirectional=True) | |
self.fc = nn.Linear(self.hidden_size * 2, self.hidden_size) | |
self.drop = nn.Dropout(0.5) | |
self.finetuning = finetuning | |
def forward(self, x): | |
if self.training and self.finetuning: | |
self.bert.train() | |
encoded_layers, _ = self.bert(x) | |
enc1 = encoded_layers[-1] # [batch_size, max_len, hidden_size] | |
else: | |
self.bert.eval() | |
with torch.no_grad(): | |
encoded_layers, _ = self.bert(x) | |
enc1 = encoded_layers[-1] | |
enc, (final_hidden_state, final_cell_state) = self.rnn(enc1) # final_hidden_sate: [1, batch_size, hidden_size] | |
# enc: [batch_size, seq_len, num_directions * hidden_size] | |
# Decode the hidden state of the last time step | |
enc = enc[:, -1, :] | |
logits = self.fc(enc) | |
logits = self.drop(logits) | |
return logits | |
class MultiModal(nn.Module): | |
def __init__(self, num_classes=3, hidden_size=300): | |
super().__init__() | |
self.hidden_size = hidden_size | |
self.num_classes = num_classes | |
self.bert_net = BertNet(hidden_size = self.hidden_size) | |
self.conv_et = ConvNet(hidden_size = self.hidden_size) | |
self.fc = nn.Sequential( | |
nn.Linear(self.hidden_size *2, self.hidden_size * 2), | |
nn.CELU(), | |
nn.Linear(self.hidden_size * 2, self.hidden_size), | |
nn.Linear(self.hidden_size, self.num_classes), | |
) | |
def forward(self, text_x, sound_x): | |
text_x = self.bert_net(text_x) | |
sound_x = self.conv_et(sound_x) | |
out = torch.cat([text_x, sound_x], 1) | |
out = self.fc(out) | |
return out | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment