Created
August 6, 2018 08:15
-
-
Save bpinaya/0d3fae434afd1bb6d51ccc9c88d99b41 to your computer and use it in GitHub Desktop.
FastRCNN VGG16 for Netscope visualization, not supporting certain layers.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
name: "FastRCNN VGG16" | |
input: "data" | |
input_shape { | |
dim: 2 | |
dim: 3 | |
dim: 375 | |
dim: 500 | |
} | |
input: "im_info" | |
input_shape { | |
dim: 2 | |
dim: 1 | |
dim: 1 | |
dim: 3 | |
} | |
layer { | |
name: "conv1_1" | |
type: "Convolution" | |
bottom: "data" | |
top: "conv1_1" | |
convolution_param { | |
num_output: 64 | |
pad: 1 kernel_size: 3 | |
} | |
} | |
layer { | |
name: "relu1_1" | |
type: "ReLU" | |
bottom: "conv1_1" | |
top: "conv1_1" | |
} | |
layer { | |
name: "conv1_2" | |
type: "Convolution" | |
bottom: "conv1_1" | |
top: "conv1_2" | |
convolution_param { | |
num_output: 64 | |
pad: 1 kernel_size: 3 | |
} | |
} | |
layer { | |
name: "relu1_2" | |
type: "ReLU" | |
bottom: "conv1_2" | |
top: "conv1_2" | |
} | |
layer { | |
name: "pool1" | |
type: "Pooling" | |
bottom: "conv1_2" | |
top: "pool1" | |
pooling_param { | |
pool: MAX | |
kernel_size: 2 stride: 2 | |
} | |
} | |
layer { | |
name: "conv2_1" | |
type: "Convolution" | |
bottom: "pool1" | |
top: "conv2_1" | |
convolution_param { | |
num_output: 128 | |
pad: 1 kernel_size: 3 | |
} | |
} | |
layer { | |
name: "relu2_1" | |
type: "ReLU" | |
bottom: "conv2_1" | |
top: "conv2_1" | |
} | |
layer { | |
name: "conv2_2" | |
type: "Convolution" | |
bottom: "conv2_1" | |
top: "conv2_2" | |
convolution_param { | |
num_output: 128 | |
pad: 1 kernel_size: 3 | |
} | |
} | |
layer { | |
name: "relu2_2" | |
type: "ReLU" | |
bottom: "conv2_2" | |
top: "conv2_2" | |
} | |
layer { | |
name: "pool2" | |
type: "Pooling" | |
bottom: "conv2_2" | |
top: "pool2" | |
pooling_param { | |
pool: MAX | |
kernel_size: 2 stride: 2 | |
} | |
} | |
layer { | |
name: "conv3_1" | |
type: "Convolution" | |
bottom: "pool2" | |
top: "conv3_1" | |
convolution_param { | |
num_output: 256 | |
pad: 1 kernel_size: 3 | |
} | |
} | |
layer { | |
name: "relu3_1" | |
type: "ReLU" | |
bottom: "conv3_1" | |
top: "conv3_1" | |
} | |
layer { | |
name: "conv3_2" | |
type: "Convolution" | |
bottom: "conv3_1" | |
top: "conv3_2" | |
convolution_param { | |
num_output: 256 | |
pad: 1 kernel_size: 3 | |
} | |
} | |
layer { | |
name: "relu3_2" | |
type: "ReLU" | |
bottom: "conv3_2" | |
top: "conv3_2" | |
} | |
layer { | |
name: "conv3_3" | |
type: "Convolution" | |
bottom: "conv3_2" | |
top: "conv3_3" | |
convolution_param { | |
num_output: 256 | |
pad: 1 kernel_size: 3 | |
} | |
} | |
layer { | |
name: "relu3_3" | |
type: "ReLU" | |
bottom: "conv3_3" | |
top: "conv3_3" | |
} | |
layer { | |
name: "pool3" | |
type: "Pooling" | |
bottom: "conv3_3" | |
top: "pool3" | |
pooling_param { | |
pool: MAX | |
kernel_size: 2 stride: 2 | |
} | |
} | |
layer { | |
name: "conv4_1" | |
type: "Convolution" | |
bottom: "pool3" | |
top: "conv4_1" | |
convolution_param { | |
num_output: 512 | |
pad: 1 kernel_size: 3 | |
} | |
} | |
layer { | |
name: "relu4_1" | |
type: "ReLU" | |
bottom: "conv4_1" | |
top: "conv4_1" | |
} | |
layer { | |
name: "conv4_2" | |
type: "Convolution" | |
bottom: "conv4_1" | |
top: "conv4_2" | |
convolution_param { | |
num_output: 512 | |
pad: 1 kernel_size: 3 | |
} | |
} | |
layer { | |
name: "relu4_2" | |
type: "ReLU" | |
bottom: "conv4_2" | |
top: "conv4_2" | |
} | |
layer { | |
name: "conv4_3" | |
type: "Convolution" | |
bottom: "conv4_2" | |
top: "conv4_3" | |
convolution_param { | |
num_output: 512 | |
pad: 1 kernel_size: 3 | |
} | |
} | |
layer { | |
name: "relu4_3" | |
type: "ReLU" | |
bottom: "conv4_3" | |
top: "conv4_3" | |
} | |
layer { | |
name: "pool4" | |
type: "Pooling" | |
bottom: "conv4_3" | |
top: "pool4" | |
pooling_param { | |
pool: MAX | |
kernel_size: 2 stride: 2 | |
} | |
} | |
layer { | |
name: "conv5_1" | |
type: "Convolution" | |
bottom: "pool4" | |
top: "conv5_1" | |
convolution_param { | |
num_output: 512 | |
pad: 1 kernel_size: 3 | |
} | |
} | |
layer { | |
name: "relu5_1" | |
type: "ReLU" | |
bottom: "conv5_1" | |
top: "conv5_1" | |
} | |
layer { | |
name: "conv5_2" | |
type: "Convolution" | |
bottom: "conv5_1" | |
top: "conv5_2" | |
convolution_param { | |
num_output: 512 | |
pad: 1 kernel_size: 3 | |
} | |
} | |
layer { | |
name: "relu5_2" | |
type: "ReLU" | |
bottom: "conv5_2" | |
top: "conv5_2" | |
} | |
layer { | |
name: "conv5_3" | |
type: "Convolution" | |
bottom: "conv5_2" | |
top: "conv5_3" | |
convolution_param { | |
num_output: 512 | |
pad: 1 kernel_size: 3 | |
} | |
} | |
layer { | |
name: "relu5_3" | |
type: "ReLU" | |
bottom: "conv5_3" | |
top: "conv5_3" | |
} | |
#========= RPN ============ | |
layer { | |
name: "rpn_conv/3x3" | |
type: "Convolution" | |
bottom: "conv5_3" | |
top: "rpn/output" | |
convolution_param { | |
num_output: 512 | |
kernel_size: 3 pad: 1 stride: 1 | |
} | |
} | |
layer { | |
name: "rpn_relu/3x3" | |
type: "ReLU" | |
bottom: "rpn/output" | |
top: "rpn/output" | |
} | |
layer { | |
name: "rpn_cls_score" | |
type: "Convolution" | |
bottom: "rpn/output" | |
top: "rpn_cls_score" | |
convolution_param { | |
num_output: 18 # 2(bg/fg) * 9(anchors) | |
kernel_size: 1 pad: 0 stride: 1 | |
} | |
} | |
layer { | |
name: "rpn_bbox_pred" | |
type: "Convolution" | |
bottom: "rpn/output" | |
top: "rpn_bbox_pred" | |
convolution_param { | |
num_output: 36 # 4 * 9(anchors) | |
kernel_size: 1 pad: 0 stride: 1 | |
} | |
} | |
layer { | |
bottom: "rpn_cls_score" | |
top: "rpn_cls_score_reshape" | |
name: "ReshapeCTo2" | |
type: "Reshape" | |
reshape_param { | |
shape { | |
dim: 2 | |
dim: -1 | |
dim: 0 | |
} | |
axis: 1 | |
} | |
} | |
#========= RoI Proposal ============ | |
layer { | |
name: "rpn_cls_prob" | |
type: "Softmax" | |
bottom: "rpn_cls_score_reshape" | |
top: "rpn_cls_prob" | |
} | |
layer { | |
name: 'ReshapeCTo18' | |
type: 'Reshape' | |
bottom: 'rpn_cls_prob' | |
top: 'rpn_cls_prob_reshape' | |
reshape_param { | |
shape { | |
dim: 18 | |
dim: -1 | |
dim: 0 | |
} | |
axis: 1 | |
} | |
} | |
layer { | |
name: "RPROIFused" | |
type: "IPlugin" | |
bottom: 'rpn_cls_prob_reshape' | |
bottom: 'rpn_bbox_pred' | |
bottom: 'conv5_3' | |
bottom: 'im_info' | |
top: 'rois' | |
top: 'pool5' | |
} | |
layer { | |
name: "fc6" | |
type: "InnerProduct" | |
bottom: "pool5" | |
top: "fc6" | |
inner_product_param { | |
num_output: 4096 | |
} | |
} | |
layer { | |
name: "relu6" | |
type: "ReLU" | |
bottom: "fc6" | |
top: "fc6" | |
} | |
layer { | |
name: "fc7" | |
type: "InnerProduct" | |
bottom: "fc6" | |
top: "fc7" | |
inner_product_param { | |
num_output: 4096 | |
} | |
} | |
layer { | |
name: "relu7" | |
type: "ReLU" | |
bottom: "fc7" | |
top: "fc7" | |
} | |
layer { | |
name: "cls_score" | |
type: "InnerProduct" | |
bottom: "fc7" | |
top: "cls_score" | |
inner_product_param { | |
num_output: 21 | |
} | |
} | |
layer { | |
name: "bbox_pred" | |
type: "InnerProduct" | |
bottom: "fc7" | |
top: "bbox_pred" | |
inner_product_param { | |
num_output: 84 | |
} | |
} | |
layer { | |
name: "cls_prob" | |
type: "Softmax" | |
bottom: "cls_score" | |
top: "cls_prob" | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment