Created
April 25, 2019 09:58
-
-
Save bpinaya/3e6573284eb81d5553bed7eb683b23f7 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
layer { | |
name: "input" | |
type: "Input" | |
top: "data" | |
input_param { | |
shape { dim: 1 dim: 3 dim: 500 dim: 500 } | |
} | |
} | |
layer { | |
name: "conv1_1" | |
type: "Convolution" | |
bottom: "data" | |
top: "conv1_1" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 64 | |
pad: 100 | |
kernel_size: 3 | |
stride: 1 | |
} | |
} | |
layer { | |
name: "relu1_1" | |
type: "ReLU" | |
bottom: "conv1_1" | |
top: "conv1_1" | |
} | |
layer { | |
name: "conv1_2" | |
type: "Convolution" | |
bottom: "conv1_1" | |
top: "conv1_2" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 64 | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
} | |
} | |
layer { | |
name: "relu1_2" | |
type: "ReLU" | |
bottom: "conv1_2" | |
top: "conv1_2" | |
} | |
layer { | |
name: "pool1" | |
type: "Pooling" | |
bottom: "conv1_2" | |
top: "pool1" | |
pooling_param { | |
pool: MAX | |
kernel_size: 2 | |
stride: 2 | |
} | |
} | |
layer { | |
name: "conv2_1" | |
type: "Convolution" | |
bottom: "pool1" | |
top: "conv2_1" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
} | |
} | |
layer { | |
name: "relu2_1" | |
type: "ReLU" | |
bottom: "conv2_1" | |
top: "conv2_1" | |
} | |
layer { | |
name: "conv2_2" | |
type: "Convolution" | |
bottom: "conv2_1" | |
top: "conv2_2" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
} | |
} | |
layer { | |
name: "relu2_2" | |
type: "ReLU" | |
bottom: "conv2_2" | |
top: "conv2_2" | |
} | |
layer { | |
name: "pool2" | |
type: "Pooling" | |
bottom: "conv2_2" | |
top: "pool2" | |
pooling_param { | |
pool: MAX | |
kernel_size: 2 | |
stride: 2 | |
} | |
} | |
layer { | |
name: "conv3_1" | |
type: "Convolution" | |
bottom: "pool2" | |
top: "conv3_1" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 256 | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
} | |
} | |
layer { | |
name: "relu3_1" | |
type: "ReLU" | |
bottom: "conv3_1" | |
top: "conv3_1" | |
} | |
layer { | |
name: "conv3_2" | |
type: "Convolution" | |
bottom: "conv3_1" | |
top: "conv3_2" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 256 | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
} | |
} | |
layer { | |
name: "relu3_2" | |
type: "ReLU" | |
bottom: "conv3_2" | |
top: "conv3_2" | |
} | |
layer { | |
name: "conv3_3" | |
type: "Convolution" | |
bottom: "conv3_2" | |
top: "conv3_3" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 256 | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
} | |
} | |
layer { | |
name: "relu3_3" | |
type: "ReLU" | |
bottom: "conv3_3" | |
top: "conv3_3" | |
} | |
layer { | |
name: "pool3" | |
type: "Pooling" | |
bottom: "conv3_3" | |
top: "pool3" | |
pooling_param { | |
pool: MAX | |
kernel_size: 2 | |
stride: 2 | |
} | |
} | |
layer { | |
name: "conv4_1" | |
type: "Convolution" | |
bottom: "pool3" | |
top: "conv4_1" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 512 | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
} | |
} | |
layer { | |
name: "relu4_1" | |
type: "ReLU" | |
bottom: "conv4_1" | |
top: "conv4_1" | |
} | |
layer { | |
name: "conv4_2" | |
type: "Convolution" | |
bottom: "conv4_1" | |
top: "conv4_2" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 512 | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
} | |
} | |
layer { | |
name: "relu4_2" | |
type: "ReLU" | |
bottom: "conv4_2" | |
top: "conv4_2" | |
} | |
layer { | |
name: "conv4_3" | |
type: "Convolution" | |
bottom: "conv4_2" | |
top: "conv4_3" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 512 | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
} | |
} | |
layer { | |
name: "relu4_3" | |
type: "ReLU" | |
bottom: "conv4_3" | |
top: "conv4_3" | |
} | |
layer { | |
name: "pool4" | |
type: "Pooling" | |
bottom: "conv4_3" | |
top: "pool4" | |
pooling_param { | |
pool: MAX | |
kernel_size: 2 | |
stride: 2 | |
} | |
} | |
layer { | |
name: "conv5_1" | |
type: "Convolution" | |
bottom: "pool4" | |
top: "conv5_1" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 512 | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
} | |
} | |
layer { | |
name: "relu5_1" | |
type: "ReLU" | |
bottom: "conv5_1" | |
top: "conv5_1" | |
} | |
layer { | |
name: "conv5_2" | |
type: "Convolution" | |
bottom: "conv5_1" | |
top: "conv5_2" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 512 | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
} | |
} | |
layer { | |
name: "relu5_2" | |
type: "ReLU" | |
bottom: "conv5_2" | |
top: "conv5_2" | |
} | |
layer { | |
name: "conv5_3" | |
type: "Convolution" | |
bottom: "conv5_2" | |
top: "conv5_3" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 512 | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
} | |
} | |
layer { | |
name: "relu5_3" | |
type: "ReLU" | |
bottom: "conv5_3" | |
top: "conv5_3" | |
} | |
layer { | |
name: "pool5" | |
type: "Pooling" | |
bottom: "conv5_3" | |
top: "pool5" | |
pooling_param { | |
pool: MAX | |
kernel_size: 2 | |
stride: 2 | |
} | |
} | |
layer { | |
name: "fc6" | |
type: "Convolution" | |
bottom: "pool5" | |
top: "fc6" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 4096 | |
pad: 0 | |
kernel_size: 3 | |
stride: 1 | |
dilation: 3 | |
} | |
} | |
layer { | |
name: "relu6" | |
type: "ReLU" | |
bottom: "fc6" | |
top: "fc6" | |
} | |
layer { | |
name: "drop6" | |
type: "Dropout" | |
bottom: "fc6" | |
top: "fc6" | |
dropout_param { | |
dropout_ratio: 0.5 | |
} | |
} | |
layer { | |
name: "fc7" | |
type: "Convolution" | |
bottom: "fc6" | |
top: "fc7" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 4096 | |
pad: 0 | |
kernel_size: 1 | |
stride: 1 | |
} | |
} | |
layer { | |
name: "relu7" | |
type: "ReLU" | |
bottom: "fc7" | |
top: "fc7" | |
} | |
layer { | |
name: "drop7" | |
type: "Dropout" | |
bottom: "fc7" | |
top: "fc7" | |
dropout_param { | |
dropout_ratio: 0.5 | |
} | |
} | |
layer { | |
name: "score_fr" | |
type: "Convolution" | |
bottom: "fc7" | |
top: "score_fr" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 21 | |
pad: 0 | |
kernel_size: 1 | |
} | |
} | |
layer { | |
name: "upscore2" | |
type: "Deconvolution" | |
bottom: "score_fr" | |
top: "upscore2" | |
param { | |
lr_mult: 0 | |
} | |
convolution_param { | |
num_output: 21 | |
bias_term: false | |
kernel_size: 4 | |
stride: 2 | |
} | |
} | |
layer { | |
name: "scale_pool4" | |
type: "Scale" | |
bottom: "pool4" | |
top: "scale_pool4" | |
param { | |
lr_mult: 0 | |
} | |
scale_param { | |
filler { | |
type: "constant" | |
value: 0.01 | |
} | |
} | |
} | |
layer { | |
name: "score_pool4" | |
type: "Convolution" | |
bottom: "scale_pool4" | |
top: "score_pool4" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 21 | |
pad: 0 | |
kernel_size: 1 | |
} | |
} | |
layer { | |
name: "Cropping" | |
type: "Crop" | |
bottom: "score_pool4" | |
bottom: "upscore2" | |
top: "score_pool4c" | |
crop_param { | |
axis: 2 | |
offset: 5 | |
} | |
} | |
layer { | |
name: "fuse" | |
type: "Eltwise" | |
bottom: "upscore2" | |
bottom: "score_pool4c" | |
top: "fuse_pool4" | |
eltwise_param { | |
operation: SUM | |
} | |
} | |
layer { | |
name: "upscore_pool4" | |
type: "Deconvolution" | |
bottom: "fuse_pool4" | |
top: "upscore_pool4" | |
param { | |
lr_mult: 0 | |
} | |
convolution_param { | |
num_output: 21 | |
bias_term: false | |
kernel_size: 4 | |
stride: 2 | |
} | |
} | |
layer { | |
name: "scale_pool3" | |
type: "Scale" | |
bottom: "pool3" | |
top: "scale_pool3" | |
param { | |
lr_mult: 0 | |
} | |
scale_param { | |
filler { | |
type: "constant" | |
value: 0.0001 | |
} | |
} | |
} | |
layer { | |
name: "score_pool3" | |
type: "Convolution" | |
bottom: "scale_pool3" | |
top: "score_pool3" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 21 | |
pad: 0 | |
kernel_size: 1 | |
} | |
} | |
layer { | |
name: "Cropping" | |
type: "Crop" | |
bottom: "score_pool3" | |
bottom: "upscore_pool4" | |
top: "score_pool3c" | |
crop_param { | |
axis: 2 | |
offset: 9 | |
} | |
} | |
layer { | |
name: "fuse" | |
type: "Eltwise" | |
bottom: "upscore_pool4" | |
bottom: "score_pool3c" | |
top: "fuse_pool3" | |
eltwise_param { | |
operation: SUM | |
} | |
} | |
layer { | |
name: "upscore_pool3" | |
type: "Deconvolution" | |
bottom: "fuse_pool3" | |
top: "upscore_pool3" | |
param { | |
lr_mult: 0 | |
} | |
convolution_param { | |
num_output: 21 | |
bias_term: false | |
kernel_size: 4 | |
stride: 2 | |
} | |
} | |
layer { | |
name: "scale_pool2" | |
type: "Scale" | |
bottom: "pool2" | |
top: "scale_pool2" | |
param { | |
lr_mult: 0 | |
} | |
scale_param { | |
filler { | |
type: "constant" | |
value: 1e-06 | |
} | |
} | |
} | |
layer { | |
name: "score_pool2" | |
type: "Convolution" | |
bottom: "scale_pool2" | |
top: "score_pool2" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 21 | |
pad: 0 | |
kernel_size: 1 | |
} | |
} | |
layer { | |
name: "Cropping" | |
type: "Crop" | |
bottom: "score_pool2" | |
bottom: "upscore_pool3" | |
top: "score_pool2c" | |
crop_param { | |
axis: 2 | |
offset: 17 | |
} | |
} | |
layer { | |
name: "fuse" | |
type: "Eltwise" | |
bottom: "upscore_pool3" | |
bottom: "score_pool2c" | |
top: "fuse_pool2" | |
eltwise_param { | |
operation: SUM | |
} | |
} | |
layer { | |
name: "upscore_pool2" | |
type: "Deconvolution" | |
bottom: "fuse_pool2" | |
top: "upscore_pool2" | |
param { | |
lr_mult: 0 | |
} | |
convolution_param { | |
num_output: 21 | |
bias_term: false | |
kernel_size: 4 | |
stride: 2 | |
} | |
} | |
layer { | |
name: "scale_pool1" | |
type: "Scale" | |
bottom: "pool1" | |
top: "scale_pool1" | |
param { | |
lr_mult: 0 | |
} | |
scale_param { | |
filler { | |
type: "constant" | |
value: 1e-08 | |
} | |
} | |
} | |
layer { | |
name: "score_pool1" | |
type: "Convolution" | |
bottom: "scale_pool1" | |
top: "score_pool1" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 21 | |
pad: 0 | |
kernel_size: 1 | |
} | |
} | |
layer { | |
name: "Cropping" | |
type: "Crop" | |
bottom: "score_pool1" | |
bottom: "upscore_pool2" | |
top: "score_pool1c" | |
crop_param { | |
axis: 2 | |
offset: 33 | |
} | |
} | |
layer { | |
name: "fuse" | |
type: "Eltwise" | |
bottom: "upscore_pool2" | |
bottom: "score_pool1c" | |
top: "fuse_pool1" | |
eltwise_param { | |
operation: SUM | |
} | |
} | |
layer { | |
name: "upscore_2" | |
type: "Deconvolution" | |
bottom: "fuse_pool1" | |
top: "upscore_2" | |
param { | |
lr_mult: 0 | |
} | |
convolution_param { | |
num_output: 21 | |
bias_term: false | |
kernel_size: 4 | |
stride: 2 | |
} | |
} | |
layer { | |
name: "Cropping" | |
type: "Crop" | |
bottom: "upscore_2" | |
bottom: "data" | |
top: "score" | |
crop_param { | |
axis: 2 | |
offset: 34 | |
} | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment