Last active
August 6, 2018 15:23
-
-
Save bpinaya/a927a54a5bd8d319242f763030a2d890 to your computer and use it in GitHub Desktop.
FCNAlexnet deploy network for Netscope visualization. Check https://ethereon.github.io/netscope/#/gist/a927a54a5bd8d319242f763030a2d890
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
name: "FCN AlexNet" | |
input: "data" | |
input_shape { | |
dim: 1 | |
dim: 3 | |
dim: 1024 | |
dim: 2048 | |
} | |
layer { | |
name: "shift" | |
type: "Power" | |
bottom: "data" | |
top: "data_preprocessed" | |
power_param { | |
shift: -116.0 | |
} | |
} | |
layer { | |
name: "conv1" | |
type: "Convolution" | |
bottom: "data_preprocessed" | |
top: "conv1" | |
convolution_param { | |
num_output: 96 | |
pad: 100 | |
kernel_size: 11 | |
group: 1 | |
stride: 4 | |
} | |
} | |
layer { | |
name: "relu1" | |
type: "ReLU" | |
bottom: "conv1" | |
top: "conv1" | |
} | |
layer { | |
name: "pool1" | |
type: "Pooling" | |
bottom: "conv1" | |
top: "pool1" | |
pooling_param { | |
pool: MAX | |
kernel_size: 3 | |
stride: 2 | |
} | |
} | |
layer { | |
name: "norm1" | |
type: "LRN" | |
bottom: "pool1" | |
top: "norm1" | |
lrn_param { | |
local_size: 5 | |
alpha: 0.0001 | |
beta: 0.75 | |
} | |
} | |
layer { | |
name: "conv2" | |
type: "Convolution" | |
bottom: "norm1" | |
top: "conv2" | |
convolution_param { | |
num_output: 256 | |
pad: 2 | |
kernel_size: 5 | |
group: 2 | |
stride: 1 | |
} | |
} | |
layer { | |
name: "relu2" | |
type: "ReLU" | |
bottom: "conv2" | |
top: "conv2" | |
} | |
layer { | |
name: "pool2" | |
type: "Pooling" | |
bottom: "conv2" | |
top: "pool2" | |
pooling_param { | |
pool: MAX | |
kernel_size: 3 | |
stride: 2 | |
} | |
} | |
layer { | |
name: "norm2" | |
type: "LRN" | |
bottom: "pool2" | |
top: "norm2" | |
lrn_param { | |
local_size: 5 | |
alpha: 0.0001 | |
beta: 0.75 | |
} | |
} | |
layer { | |
name: "conv3" | |
type: "Convolution" | |
bottom: "norm2" | |
top: "conv3" | |
convolution_param { | |
num_output: 384 | |
pad: 1 | |
kernel_size: 3 | |
group: 1 | |
stride: 1 | |
} | |
} | |
layer { | |
name: "relu3" | |
type: "ReLU" | |
bottom: "conv3" | |
top: "conv3" | |
} | |
layer { | |
name: "conv4" | |
type: "Convolution" | |
bottom: "conv3" | |
top: "conv4" | |
convolution_param { | |
num_output: 384 | |
pad: 1 | |
kernel_size: 3 | |
group: 2 | |
stride: 1 | |
} | |
} | |
layer { | |
name: "relu4" | |
type: "ReLU" | |
bottom: "conv4" | |
top: "conv4" | |
} | |
layer { | |
name: "conv5" | |
type: "Convolution" | |
bottom: "conv4" | |
top: "conv5" | |
convolution_param { | |
num_output: 256 | |
pad: 1 | |
kernel_size: 3 | |
group: 2 | |
stride: 1 | |
} | |
} | |
layer { | |
name: "relu5" | |
type: "ReLU" | |
bottom: "conv5" | |
top: "conv5" | |
} | |
layer { | |
name: "pool5" | |
type: "Pooling" | |
bottom: "conv5" | |
top: "pool5" | |
pooling_param { | |
pool: MAX | |
kernel_size: 3 | |
stride: 2 | |
} | |
} | |
layer { | |
name: "fc6" | |
type: "Convolution" | |
bottom: "pool5" | |
top: "fc6" | |
convolution_param { | |
num_output: 4096 | |
pad: 0 | |
kernel_size: 6 | |
group: 1 | |
stride: 1 | |
} | |
} | |
layer { | |
name: "relu6" | |
type: "ReLU" | |
bottom: "fc6" | |
top: "fc6" | |
} | |
layer { | |
name: "drop6" | |
type: "Dropout" | |
bottom: "fc6" | |
top: "fc6" | |
dropout_param { | |
dropout_ratio: 0.5 | |
} | |
} | |
layer { | |
name: "fc7" | |
type: "Convolution" | |
bottom: "fc6" | |
top: "fc7" | |
convolution_param { | |
num_output: 4096 | |
pad: 0 | |
kernel_size: 1 | |
group: 1 | |
stride: 1 | |
} | |
} | |
layer { | |
name: "relu7" | |
type: "ReLU" | |
bottom: "fc7" | |
top: "fc7" | |
} | |
layer { | |
name: "drop7" | |
type: "Dropout" | |
bottom: "fc7" | |
top: "fc7" | |
dropout_param { | |
dropout_ratio: 0.5 | |
} | |
} | |
layer { | |
name: "score_fr_21classes" | |
type: "Convolution" | |
bottom: "fc7" | |
top: "score_fr_21classes" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0.0 | |
} | |
convolution_param { | |
num_output: 21 | |
pad: 0 | |
kernel_size: 1 | |
} | |
} | |
layer { | |
name: "upscore_21classes" | |
type: "Deconvolution" | |
bottom: "score_fr_21classes" | |
top: "upscore_21classes" | |
param { | |
lr_mult: 0.0 | |
} | |
convolution_param { | |
num_output: 21 | |
bias_term: false | |
kernel_size: 63 | |
stride: 32 | |
} | |
} | |
layer { | |
name: "score" | |
type: "Crop" | |
bottom: "upscore_21classes" | |
bottom: "data" | |
top: "score" | |
crop_param { | |
axis: 2 | |
offset: 18 | |
} | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment