Last active
December 21, 2015 00:49
-
-
Save bpostlethwaite/6223259 to your computer and use it in GitHub Desktop.
Code for https://plot.ly/~bpostlethwaite/2/
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import plotly | |
py = plotly.plotly(username='bpostlethwaite', key='xxxxxxxxxx') | |
numletters = 5 | |
letterblock = 100. | |
pad = 10. | |
lp = letterblock + pad | |
base = 50. | |
letterheight = 200. | |
n = 600 | |
def circle(xa, ya, rad, theta = 2*np.pi, density = 1): | |
theta = np.linspace(0, theta, np.round(n * density)) | |
x = xa + rad*np.cos(theta) | |
y = ya + rad*np.sin(theta) | |
return (x, y) | |
def parabola(x1, width, base, height, density = 1): | |
x2 = x1 + width | |
a = (x2 - x1)/2 | |
x = np.linspace(x1, x2, np.round(n * density)) | |
xa = np.linspace(x1, x2, np.round(n * density)) - (a + x1) | |
y = (xa)**4 | |
y = - y * height / np.max(y) + base + height | |
return (x, y) | |
def vertline(x, base, height, density = 1): | |
return (x * np.ones( np.round(n * density) ), | |
np.linspace(base, base + height, np.round(n * density))) | |
def horzline(y, start, width, density = 1): | |
return (np.linspace(start, start + width, np.round(n * density)), y * np.ones(np.round(n * density))) | |
def absline(x1, width, base, height, density = 1): | |
x = np.linspace(x1, x1 + width, np.round(n * density)) | |
y = np.abs(x - (x1 + 0.5*width)) | |
y = y * height / np.max(y) + base | |
return (x, y) | |
def scatter((x,y)): | |
xs = np.zeros(len(x)) | |
ys = np.zeros(len(y)) | |
for i in range(len(x)): | |
xs[i] = np.random.normal(loc=x[i], scale=8.0, size=1) | |
ys[i] = np.random.normal(loc=y[i], scale=8.0, size=1) | |
return (xs, ys) | |
# Construct Letters | |
xy = [] | |
xy.append(vertline(pad, base, letterheight)) # h line | |
xy.append(parabola(pad, letterblock, base, 0.5 * letterheight)) # h parabola | |
xy.append(vertline(lp + pad, base, 0.5 * letterheight, density = 0.5)) # i line | |
xy.append(circle(lp + pad, base + 0.6 * letterheight, 0.1 * letterheight, density = 0.5)) # i dot | |
xy.append(circle(2.5*lp, base + letterblock, 0.8*letterblock, density = 2)) # phi | |
xy.append(vertline(2.5*lp, base, 2*letterblock)) # phi line | |
xy.append(horzline(base, 2.5*lp - 0.4*letterblock, 0.8 * letterblock, density = 0.25)) # phi line cap | |
xy.append(horzline(base + 2*letterblock, 2.5*lp - 0.4*letterblock, 0.8 * letterblock, density = 0.25)) # phi line cap | |
xy.append(vertline(3.5*lp, base + 0.8 * letterheight, 0.1 * letterheight, density = 0.2)) # comma | |
xy.append(absline(3.5*lp, letterblock, base, 0.5 * letterheight)) # v | |
xy.append(circle(5 * lp, base + 0.4*letterblock, 0.4*letterblock, 1.8 * np.pi)) # e circle | |
xy.append(horzline(base + 0.4*letterblock, 5 * lp - 0.4 * letterblock, 0.8 * letterblock, density = 0.5)) # e line | |
# Construct Dictionaries | |
traces = [] | |
xdist = np.array([]) | |
ydist = np.array([]) | |
for t in xy: | |
# Randomly distribute | |
ts = scatter(t) | |
# Create some synthetic distribution | |
xdist = np.hstack( (xdist, (ts[0])) ) | |
ydist = np.hstack( (ydist, (ts[1])) ) | |
traces.append( | |
{'x': t[0], | |
'y': t[1], | |
'type': 'scatter', | |
'mode': 'lines', | |
'line':{ | |
'color': 'lightblue', | |
'width': 4} | |
}) | |
# Create Red Line Data | |
xdistc = np.cumsum( np.diff(np.sort(xdist)) ) | |
xdistc *= (base + letterheight) / np.max(xdistc) | |
traces.append( | |
{'x': np.linspace(0, 5.5*lp, len(xdistc)), | |
'y': xdistc + 0.5 * base, | |
'type': 'scatter', | |
'mode': 'lines', | |
'line':{ | |
'color': 'red', | |
'width': 4} | |
}) | |
# Histogram of scattered data | |
traces.append({ | |
'x': xdist, | |
'y': ydist, | |
'type':'histogram2d', | |
'autobinx': False, | |
'xbins': { | |
'start': 0, | |
'end': 5.5 * lp, | |
'size': 5}, | |
'autobiny': False, | |
'ybins': { | |
'start': 0.5 * base, | |
'end': 275, | |
'size': 5}, | |
'histnorm': 'probability' | |
}) | |
layout = { | |
"title": "Plotly plot submission: High Five", | |
"titlefont": { | |
"color": "rgb(87,54,255)", | |
"size": 28 | |
}, | |
"xaxis": | |
{ | |
"title": "time spent with plotly", | |
"titlefont": { | |
"color": "rgb(87,54,255)", | |
"size": 22 | |
}, | |
"autorange": False, | |
"range": [0, 5.5*lp], | |
"showticklabels": True, | |
"ticks": "none", | |
"showgrid": True, | |
"gridcolor": "white", | |
"gridwidth": 2, | |
"linecolor": "white" | |
}, | |
"yaxis": | |
{ | |
"title": "enthusiasm for plotly", | |
"titlefont": { | |
"color": "rgb(87,54,255)", | |
"size": 22}, | |
"autorange": False, | |
"range":[0.5 * base, 275], | |
"gridcolor": "white", | |
"linecolor": "white", | |
"ticks": "none", | |
"showticklabels": False | |
}, | |
"showlegend": False | |
} | |
r = py.plot(traces) | |
response = py.layout(layout, filename = r['filename']) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment