Last active
October 13, 2016 17:08
-
-
Save bquast/09c12cfa305069302f75d2fef67753cc to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
set.seed(1) | |
# define some functions | |
## convert integer to binary | |
i2b <- function(integer, length=8) | |
as.numeric(intToBits(integer))[1:length] | |
## apply | |
int2bin <- function(integer, length=8) | |
t(sapply(integer, i2b, length=length)) | |
## sigmoid function | |
sigmoid <- function(x, k=1, x0=0) | |
1 / (1+exp( -k*(x-x0) )) | |
## sigmoid derivative | |
sigmoid_output_to_derivative <- function(x) | |
x*(1-x) | |
## tanh derivative | |
tanh_output_to_derivative <- function(x) | |
1-x^2 | |
# create training numbers | |
X1 = sample(0:1023, 100000, replace=TRUE) | |
X2 = sample(0:1023, 100000, replace=TRUE) | |
# create training response numbers | |
Y <- X1 + X2 | |
# convert to binary | |
X1b <- int2bin(X1, length=10) | |
X2b <- int2bin(X2, length=10) | |
Yb <- int2bin(Y, length=10) | |
# input variables | |
alpha = 0.1 | |
alpha_decay = 0.999 | |
momentum = 0.1 | |
init_weight = 1 | |
batch_size = 20 | |
input_dim = 2 | |
hidden_dim = 8 | |
output_dim = 1 | |
binary_dim = 10 | |
largest_number = 2^binary_dim | |
output_size = 100 | |
# initialise neural network weights | |
synapse_0_i = matrix(runif(n = input_dim *hidden_dim, min=-init_weight, max=init_weight), nrow=input_dim) | |
synapse_0_f = matrix(runif(n = input_dim *hidden_dim, min=-init_weight, max=init_weight), nrow=input_dim) | |
synapse_0_o = matrix(runif(n = input_dim *hidden_dim, min=-init_weight, max=init_weight), nrow=input_dim) | |
synapse_0_c = matrix(runif(n = input_dim *hidden_dim, min=-init_weight, max=init_weight), nrow=input_dim) | |
synapse_1 = matrix(runif(n = hidden_dim*output_dim, min=-init_weight, max=init_weight), nrow=hidden_dim) | |
synapse_h_i = matrix(runif(n = hidden_dim*hidden_dim, min=-init_weight, max=init_weight), nrow=hidden_dim) | |
synapse_h_f = matrix(runif(n = hidden_dim*hidden_dim, min=-init_weight, max=init_weight), nrow=hidden_dim) | |
synapse_h_o = matrix(runif(n = hidden_dim*hidden_dim, min=-init_weight, max=init_weight), nrow=hidden_dim) | |
synapse_h_c = matrix(runif(n = hidden_dim*hidden_dim, min=-init_weight, max=init_weight), nrow=hidden_dim) | |
synapse_b_1 = runif(n = output_dim, min=-init_weight, max=init_weight) | |
synapse_b_i = runif(n = hidden_dim, min=-init_weight, max=init_weight) | |
synapse_b_f = runif(n = hidden_dim, min=-init_weight, max=init_weight) | |
synapse_b_o = runif(n = hidden_dim, min=-init_weight, max=init_weight) | |
synapse_b_c = runif(n = hidden_dim, min=-init_weight, max=init_weight) | |
# initialise synapse updates | |
synapse_0_i_update = matrix(0, nrow = input_dim, ncol = hidden_dim) | |
synapse_0_f_update = matrix(0, nrow = input_dim, ncol = hidden_dim) | |
synapse_0_o_update = matrix(0, nrow = input_dim, ncol = hidden_dim) | |
synapse_0_c_update = matrix(0, nrow = input_dim, ncol = hidden_dim) | |
synapse_1_update = matrix(0, nrow = hidden_dim, ncol = output_dim) | |
synapse_h_i_update = matrix(0, nrow = hidden_dim, ncol = hidden_dim) | |
synapse_h_f_update = matrix(0, nrow = hidden_dim, ncol = hidden_dim) | |
synapse_h_o_update = matrix(0, nrow = hidden_dim, ncol = hidden_dim) | |
synapse_h_c_update = matrix(0, nrow = hidden_dim, ncol = hidden_dim) | |
synapse_b_1_update = rep(0, output_dim) | |
synapse_b_i_update = rep(0, hidden_dim) | |
synapse_b_f_update = rep(0, hidden_dim) | |
synapse_b_o_update = rep(0, hidden_dim) | |
synapse_b_c_update = rep(0, hidden_dim) | |
# training logic | |
for (j in 1:length(X1)) { | |
# select input variables | |
a = X1b[j,] | |
b = X2b[j,] | |
# response variable | |
c = Yb[j,] | |
# where we'll store our best guesss (binary encoded) | |
d = matrix(0, nrow = 1, ncol = binary_dim) | |
overallError = 0 | |
layer_2_deltas = matrix(0) | |
layer_1_values = matrix(0, nrow=1, ncol = hidden_dim) | |
# initialise state cell | |
c_t_m1 = matrix(0, nrow=1, ncol = hidden_dim) | |
# moving along the positions in the binary encoding | |
for (position in 1:binary_dim) { | |
# generate input and output | |
X = cbind(a[position],b[position]) | |
y = c[position] | |
# hidden layer (input ~+ prev_hidden) | |
i_t = sigmoid((X%*%synapse_0_i) + (layer_1_values[dim(layer_1_values)[1],] %*% synapse_h_i) + synapse_b_i) # add bias? | |
f_t = sigmoid((X%*%synapse_0_f) + (layer_1_values[dim(layer_1_values)[1],] %*% synapse_h_f) + synapse_b_f) # add bias? | |
o_t = sigmoid((X%*%synapse_0_o) + (layer_1_values[dim(layer_1_values)[1],] %*% synapse_h_o) + synapse_b_o) # add bias? | |
c_in_t = tanh( (X%*%synapse_0_c) + (layer_1_values[dim(layer_1_values)[1],] %*% synapse_h_c) + synapse_b_c) | |
c_t = (f_t * c_t_m1[dim(layer_1_values)[1],]) + (i_t * c_in_t) | |
layer_1 = o_t * tanh(c_t) | |
c_t_m1 = rbind(c_t_m1, c_t) | |
# output layer (new binary representation) | |
layer_2 = sigmoid(layer_1 %*% synapse_1 + synapse_b_1) | |
# did we miss?... if so, by how much? | |
layer_2_error = y - layer_2 | |
layer_2_deltas = rbind(layer_2_deltas, layer_2_error * sigmoid_output_to_derivative(layer_2)) | |
overallError = overallError + round(abs(layer_2_error)) | |
# decode estimate so we can print it out | |
d[position] = round(layer_2) | |
# store hidden layer so we can print it out | |
layer_1_values = rbind(layer_1_values, layer_1) | |
} | |
future_layer_1_i_delta = matrix(0, nrow = 1, ncol = hidden_dim) | |
future_layer_1_f_delta = matrix(0, nrow = 1, ncol = hidden_dim) | |
future_layer_1_o_delta = matrix(0, nrow = 1, ncol = hidden_dim) | |
future_layer_1_c_delta = matrix(0, nrow = 1, ncol = hidden_dim) | |
for (position in 1:binary_dim) { | |
X = cbind(a[binary_dim-(position-1)], b[binary_dim-(position-1)]) | |
layer_1 = layer_1_values[dim(layer_1_values)[1]-(position-1),] | |
prev_layer_1 = layer_1_values[dim(layer_1_values)[1]-position,] | |
# error at output layer | |
layer_2_delta = layer_2_deltas[dim(layer_2_deltas)[1]-(position-1),] | |
# error at hidden layer | |
layer_1_i_delta = (future_layer_1_i_delta %*% t(synapse_h_i) + layer_2_delta %*% t(synapse_1)) * | |
sigmoid_output_to_derivative(tanh_output_to_derivative(layer_1)) | |
layer_1_f_delta = (future_layer_1_f_delta %*% t(synapse_h_f) + layer_2_delta %*% t(synapse_1)) * | |
sigmoid_output_to_derivative(tanh_output_to_derivative(layer_1)) | |
layer_1_o_delta = (future_layer_1_o_delta %*% t(synapse_h_o) + layer_2_delta %*% t(synapse_1)) * | |
sigmoid_output_to_derivative(layer_1) | |
layer_1_c_delta = (future_layer_1_c_delta %*% t(synapse_h_c) + layer_2_delta %*% t(synapse_1)) * | |
tanh_output_to_derivative(tanh_output_to_derivative(layer_1)) | |
# let's update all our weights so we can try again | |
synapse_1_update = synapse_1_update + matrix(layer_1) %*% layer_2_delta | |
synapse_h_i_update = synapse_h_i_update + matrix(prev_layer_1) %*% layer_1_i_delta | |
synapse_h_f_update = synapse_h_f_update + matrix(prev_layer_1) %*% layer_1_f_delta | |
synapse_h_o_update = synapse_h_o_update + matrix(prev_layer_1) %*% layer_1_o_delta | |
synapse_h_c_update = synapse_h_c_update + matrix(prev_layer_1) %*% layer_1_c_delta | |
synapse_0_i_update = synapse_0_i_update + t(X) %*% layer_1_i_delta | |
synapse_0_f_update = synapse_0_f_update + t(X) %*% layer_1_f_delta | |
synapse_0_o_update = synapse_0_o_update + t(X) %*% layer_1_o_delta | |
synapse_0_c_update = synapse_0_c_update + t(X) %*% layer_1_c_delta | |
synapse_b_1_update = synapse_b_1_update + layer_2_delta | |
synapse_b_i_update = synapse_b_i_update + layer_1_i_delta | |
synapse_b_f_update = synapse_b_f_update + layer_1_f_delta | |
synapse_b_o_update = synapse_b_o_update + layer_1_o_delta | |
synapse_b_c_update = synapse_b_c_update + layer_1_c_delta | |
future_layer_1_i_delta = layer_1_i_delta | |
future_layer_1_f_delta = layer_1_f_delta | |
future_layer_1_o_delta = layer_1_o_delta | |
future_layer_1_c_delta = layer_1_c_delta | |
} | |
if(j %% batch_size ==0) { | |
synapse_0_i = synapse_0_i + ( synapse_0_i_update * alpha ) | |
synapse_0_f = synapse_0_f + ( synapse_0_f_update * alpha ) | |
synapse_0_o = synapse_0_o + ( synapse_0_o_update * alpha ) | |
synapse_0_c = synapse_0_c + ( synapse_0_c_update * alpha ) | |
synapse_1 = synapse_1 + ( synapse_1_update * alpha ) | |
synapse_h_i = synapse_h_i + ( synapse_h_i_update * alpha ) | |
synapse_h_f = synapse_h_f + ( synapse_h_f_update * alpha ) | |
synapse_h_o = synapse_h_o + ( synapse_h_o_update * alpha ) | |
synapse_h_c = synapse_h_c + ( synapse_h_c_update * alpha ) | |
synapse_b_1 = synapse_b_1 + ( synapse_b_1_update * alpha ) | |
synapse_b_i = synapse_b_i + ( synapse_b_i_update * alpha ) | |
synapse_b_f = synapse_b_f + ( synapse_b_f_update * alpha ) | |
synapse_b_o = synapse_b_o + ( synapse_b_o_update * alpha ) | |
synapse_b_c = synapse_b_c + ( synapse_b_c_update * alpha ) | |
alpha = alpha * alpha_decay | |
synapse_0_i_update = synapse_0_i_update * momentum | |
synapse_0_f_update = synapse_0_f_update * momentum | |
synapse_0_o_update = synapse_0_o_update * momentum | |
synapse_0_c_update = synapse_0_c_update * momentum | |
synapse_1_update = synapse_1_update * momentum | |
synapse_h_i_update = synapse_h_i_update * momentum | |
synapse_h_f_update = synapse_h_f_update * momentum | |
synapse_h_o_update = synapse_h_o_update * momentum | |
synapse_h_c_update = synapse_h_c_update * momentum | |
synapse_b_1_update = synapse_b_1_update * momentum | |
synapse_b_i_update = synapse_b_i_update * momentum | |
synapse_b_f_update = synapse_b_f_update * momentum | |
synapse_b_o_update = synapse_b_o_update * momentum | |
synapse_b_c_update = synapse_b_c_update * momentum | |
} | |
# print out progress | |
if(j %% output_size ==0) { | |
print(paste("Error:", overallError," - alpha:",alpha)) | |
print(paste("A :", paste(a, collapse = " "))) | |
print(paste("B :", paste(b, collapse = " "))) | |
print(paste("Pred:", paste(d, collapse = " "))) | |
print(paste("True:", paste(c, collapse = " "))) | |
out = 0 | |
for (x in 1:length(d)) { | |
out[x] = rev(d)[x]*2^(x-1) } | |
print("----------------") | |
} | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Pred transitions to "NaN" pretty early when I copy/paste this and run it in.
I tried re-installing the rnn, and got this:
I am trying again with httpuv installed.