start new:
tmux
start new with session name:
tmux new -s myname
SSH agent forwarding is great. It allows you to ssh from one server to | |
another all the while using the ssh-agent running on your local | |
workstation. The benefit is you don't need to generate ssh key pairs | |
on the servers you are connecting to in order to hop around. | |
When you ssh to a remote machine the remote machine talks to your | |
local ssh-agent through the socket referenced by the SSH_AUTH_SOCK | |
environment variable. | |
So you the remote server you can do something like: |
import requests | |
import argparse | |
def download_file_from_google_drive(id, destination): | |
URL = "https://docs.google.com/uc?export=download" | |
session = requests.Session() | |
response = session.get(URL, params = { 'id' : id }, stream = True) | |
token = get_confirm_token(response) |
def pad1d(tensor, pad): | |
# tensor should be in shape (batch, time, feat) | |
# pad should be in shape (left, right) | |
tensor = tensor.permute(0, 2, 1).contiguous() # get features on first dim since we are padding time | |
original_size = tensor.size() # (batch, feat, time) | |
final_new_size = (original_size[0], original_size[1], original_size[2] + pad[0] + pad[1]) | |
temp_new_size = original_size[:2] + (1,) + original_size[2:] | |
assert len(temp_new_size) == 4 | |
tensor = tensor.view(*temp_new_size) | |
pad = pad + (0, 0) |
def describe_recursively(datum, level=0, level_increment=2): | |
indent = lambda i: "|"+"."*i+"|" | |
info_str = "L{} - TYPE: {:^6} - LEN: {:^5}" | |
if isinstance(datum, list): | |
print(indent(level) + info_str.format(level, 'list', len(datum))) | |
for i, child in enumerate(datum): | |
describe_recursively(child, level+level_increment, level_increment) | |
if i>5 and len(datum)>10: | |
print(indent(level+level_increment)+" ..... ") | |
describe_recursively(datum[-1], level+level_increment, level_increment) |
def matprint(mat, fmt="g"): | |
col_maxes = [max([len(("{:"+fmt+"}").format(x)) for x in col]) for col in mat.T] | |
for x in mat: | |
for i, y in enumerate(x): | |
print(("{:"+str(col_maxes[i])+fmt+"}").format(y), end=" ") | |
print("") | |
# Try it! | |
import numpy as np |
import eidos | |
from toolz import partition | |
import spacy | |
nlp = spacy.load('en') | |
def parse(nlp, input_, n_threads, batch_size): | |
nlp.matcher = None | |
out = [] | |
for doc in nlp.pipe(input_, batch_size=batch_size, n_threads=n_threads): |