Last active
July 31, 2016 00:55
-
-
Save brandonwillard/7a30ecbc73ce2bb809c2f360627574e7 to your computer and use it in GitHub Desktop.
Inverse Mean Reparameterization Simulation
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# | |
# Simple inspection of an inverse mean reparameterization for observations | |
# x ~ N(theta, 1) | |
# and theta = 1/u. | |
# Original discussion: https://xianblog.wordpress.com/2016/07/15/the-curious-incident-of-the-inverse-of-the-mean/ | |
# | |
# Authors: Jyotishka Datta and Brandon T. Willard | |
# | |
library(rstan) | |
rstan_options(auto_write = TRUE) | |
cauchy.code = " | |
data { | |
int<lower=0> J; | |
vector[J] Y; | |
} | |
parameters { | |
real<lower=0> u[J]; | |
} | |
transformed parameters { | |
real<lower=0> u_inv[J]; | |
for (j in 1:J){ | |
u_inv[j] <- 1/u[j]; | |
} | |
} | |
model { | |
for (j in 1:J){ | |
u[j] ~ cauchy(0, 1); | |
Y[j] ~ normal(u_inv[j], 1); | |
} | |
} | |
" | |
cauchy.fit = stan_model(model_code=cauchy.code, model_name="Cauchy") | |
gamma.code = " | |
data { | |
int<lower=0> J; | |
vector[J] Y; | |
} | |
parameters { | |
real<lower=0> u[J]; | |
} | |
transformed parameters { | |
real<lower=0> u_inv[J]; | |
for (j in 1:J){ | |
u_inv[j] <- 1/u[j]; | |
} | |
} | |
model { | |
for (j in 1:J){ | |
u[j] ~ gamma(3, 1./1000); | |
Y[j] ~ normal(u_inv[j], 1); | |
} | |
} | |
" | |
gamma.fit = stan_model(model_code=gamma.code, model_name="gamma") | |
seed.val = 495 | |
Ys = seq(-2, 30, length.out = 20) | |
u.means.data = NULL | |
for (y in Ys) { | |
c.data = list('J'=1, 'Y' = as.array(y)) | |
stan.iters = 2000 | |
for (algo in c('NUTS')) { | |
cauchy.res = sampling(cauchy.fit, | |
data = c.data, | |
iter = stan.iters, | |
algorithm = algo, | |
warmup = floor(stan.iters/2), | |
thin = 2, | |
pars = c('u', 'u_inv'), | |
#init = 0, | |
seed = seed.val, | |
chains = 1) | |
# rstan::extract(cauchy.res, pars=c("lp__"), permuted=TRUE)[[1]] | |
u.cauchy.stats = summary(cauchy.res)$summary[1,] | |
u.means.data = rbind(u.means.data, | |
data.frame(x=y, | |
var='u', | |
mean=u.cauchy.stats[6], | |
low=u.cauchy.stats[4], | |
high=u.cauchy.stats[8], | |
prior="cauchy", | |
algo=algo)) | |
u_inv.cauchy.stats = summary(cauchy.res)$summary[2,] | |
u.means.data = rbind(u.means.data, | |
data.frame(x=y, | |
var='u_inv', | |
mean=u_inv.cauchy.stats[6], | |
low=u_inv.cauchy.stats[4], | |
high=u_inv.cauchy.stats[8], | |
prior="cauchy", | |
algo=algo)) | |
gamma.res = sampling(gamma.fit, | |
data = c.data, | |
iter = stan.iters, | |
algorithm = algo, | |
warmup = floor(stan.iters/2), | |
thin = 2, | |
pars = c('u', 'u_inv'), | |
#init = 0, | |
seed = seed.val, | |
chains = 1) | |
# rstan::extract(gamma.res, pars=c("u", 'u_inv'), permuted=TRUE)[[1]] | |
u.gamma.stats = summary(gamma.res)$summary[1,] | |
u.means.data = rbind(u.means.data, | |
data.frame(x=y, | |
var='u', | |
mean=u.gamma.stats[6], | |
low=u.gamma.stats[4], | |
high=u.gamma.stats[8], | |
prior="gamma", | |
algo=algo)) | |
u_inv.gamma.stats = summary(gamma.res)$summary[2,] | |
u.means.data = rbind(u.means.data, | |
data.frame(x=y, | |
var='u_inv', | |
mean=u_inv.gamma.stats[6], | |
low=u_inv.gamma.stats[4], | |
high=u_inv.gamma.stats[8], | |
prior="gamma", | |
algo=algo)) | |
} | |
} | |
library(ggplot2) | |
library(scales) | |
# From: http://wresch.github.io/2013/03/08/asinh-scales-in-ggplot2.html | |
asinh_breaks <- function(x) { | |
br <- function(r) { | |
lmin <- round(log10(r[1])) | |
lmax <- round(log10(r[2])) | |
lbreaks <- seq(lmin, lmax, by = 1) | |
breaks <- 10 ^ lbreaks | |
} | |
p.rng <- range(x[x > 0], na.rm = TRUE) | |
breaks <- br(p.rng) | |
if (min(x) <= 0) {breaks <- c(0, breaks)} | |
if (sum(x < 0) > 1) { | |
n.rng <- -range(x[x < 0], na.rm = TRUE) | |
breaks <- c(breaks, -br(n.rng)) | |
} | |
return(sort(breaks)) | |
} | |
asinh_trans <- function() { | |
trans_new("asinh", | |
transform = asinh, | |
inverse = sinh, | |
breaks = asinh_breaks) | |
} | |
u.means.plt = ggplot(u.means.data, aes(x=x, y=mean, | |
color=interaction(prior, algo))) + geom_line() | |
u.means.plt = u.means.plt + geom_ribbon(aes(ymin=low, ymax=high, | |
fill=interaction(prior, algo)), | |
alpha=0.5) | |
u.means.plt = u.means.plt + facet_grid(var~., scales='free_y') | |
u.means.plt = u.means.plt + geom_line(data=data.frame(var='u_inv', x=Ys, mean=Ys, prior=NA, algo=NA), | |
aes(x=x, y=mean), color='black', alpha=0.5) | |
u.means.plt = u.means.plt + coord_trans(y=asinh_trans()) | |
print(u.means.plt) | |
ggsave("u_means_plot.pdf", u.means.plt) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment