Last active
August 27, 2021 22:41
-
-
Save brandonwillard/f24cf0630f02cd03440f635fd7d49ada to your computer and use it in GitHub Desktop.
Normal Regression with Horseshoe prior Gibbs Sampling for an Under-determined Model
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import time | |
from datetime import date, timedelta | |
import arviz as az | |
import formulaic | |
import matplotlib.pyplot as plt | |
import numpy as np | |
import pandas as pd | |
import scipy | |
# from polyagamma import random_polyagamma | |
X_formula = formulaic.Formula( | |
"obs ~ 1 + C(month) * C(weekday) * C(hour) * C(factor_1) * C(factor_2) * C(factor_3) * C(factor_4)" | |
) | |
def simulate_data(days_ago=100, alpha=100): | |
as_of_date = date(2021, 2, 11) | |
start_date, end_date = as_of_date + timedelta(days=-days_ago), as_of_date | |
date_rng = pd.date_range(start=start_date, end=end_date, freq="H") | |
N = len(date_rng) | |
factor_1 = np.random.randint(0, 4, size=N) | |
factor_2 = np.random.randint(0, 4, size=N) | |
factor_3 = np.random.randint(0, 1, size=N) | |
factor_4 = np.random.randint(0, 1, size=N) | |
factor_5 = np.random.randint(0, 1, size=N) | |
data = pd.DataFrame({"obs": 0}, index=date_rng) | |
data = data.assign( | |
month=pd.Categorical(data.index.month, categories=list(range(1, 13))), | |
weekday=pd.Categorical(data.index.weekday, categories=list(range(7))), | |
hour=pd.Categorical(data.index.hour, categories=list(range(24))), | |
factor_1=factor_1, | |
factor_2=factor_2, | |
factor_3=factor_3, | |
factor_4=factor_4, | |
factor_5=factor_5, | |
) | |
_, X_csr = X_formula.get_model_matrix(data, output="sparse") | |
beta = np.zeros(X_csr.shape[-1]) | |
beta[0 : (X_csr.shape[1] // 100)] = np.random.normal( | |
np.exp(np.linspace(np.log(5), 0, num=X_csr.shape[1] // 100)), 1 | |
) | |
eta = np.asarray(X_csr.dot(beta)) | |
# Binomial regression with N ~ Poisson | |
# z = scipy.special.expit(eta) | |
# q = np.random.beta(alpha * eta, alpha * (1 - eta)) | |
# obs = np.random.poisson(population_size * q) | |
# Negative binomial regression | |
# mu = np.exp(eta) | |
# p = alpha / (mu + alpha) | |
# obs = np.random.negative_binomial(alpha, p) | |
obs = np.random.normal(eta, 1) | |
data["obs"] = obs | |
return data, beta | |
np.random.seed(4223) | |
sim_data, true_beta = simulate_data() | |
def large_p_mvnormal_sampler(D_diag, Phi, a): | |
r"""Efficiently sample from a large multivariate normal. | |
This function draws samples from the following distribution: | |
.. math:: | |
\beta \sim \operatorname{N}\left( \mu, \Sigma \right) | |
where | |
.. math:: | |
\mu = \Sigma \Phi^\top a, \\ | |
\Sigma = \left( \Phi^\top \Phi + D^{-1} \right)^{-1} | |
and :math:`a \in \mathbb{R}^{n}`, :math:`\Phi \in \mathbb{R}^{n \times p}`. | |
This approach is particularly effective when :math:`p \gg n`. | |
From "Fast sampling with Gaussian scale-mixture priors in high-dimensional | |
regression", Bhattacharya, Chakraborty, and Mallick, 2015. | |
""" | |
N = a.shape[0] | |
u = np.random.normal(0, np.sqrt(D_diag)) | |
delta = np.random.normal(size=N) | |
v = Phi * u + delta | |
Phi_D = Phi.multiply(D_diag) | |
Z = (Phi_D * Phi.T + scipy.sparse.eye(N)).toarray() | |
w = scipy.linalg.solve(Z, a - v, assume_a="sym") | |
beta = u + Phi_D.T * w | |
return beta | |
def hs_gibbs(data, num_samp=5000, alpha=100, tau2=1.0): | |
"""Generate posterior samples for a regression with an HS prior.""" | |
y_csr, X_csr = X_formula.get_model_matrix(data, output="sparse") | |
X_csc = X_csr.tocsc() | |
N, M = X_csc.shape | |
y = y_csr.toarray().squeeze() | |
lambdas = np.full(M, 1) | |
etas = np.full(M, 1) | |
beta = np.zeros(M) | |
omega = np.ones_like(y) | |
# The augmented regression is `y ~ N(X @ beta, sigma2)` where `sigma2 = diag(1/omega)` | |
sigma2 = 1.0 | |
sigma = np.sqrt(sigma2) | |
y_aug = y | |
trace = {"beta": [], "lambda": []} | |
for i in range(num_samp): | |
if i % 10 == 0: | |
print(f"i = {i}") | |
# TODO: Re-enable this for Polya-gamma negative-binomial models | |
# random_polyagamma(alpha + y, X_csc * beta - np.log(alpha), out=omega) | |
# y_aug = np.log(alpha) + (y - alpha) / (2.0 * omega) | |
# | |
# Efficient under-determined sampling steps... | |
# | |
# D_inv_diag = t2 / tau2 | |
V_diag_inv = np.abs(omega) | |
Phi = X_csc.T.multiply(np.sqrt(V_diag_inv)).T | |
# Phi.nnz / np.prod(Phi.shape) == 0.003938556107574225 | |
D_diag = tau2 * np.power(lambdas, 2) | |
beta = sigma * large_p_mvnormal_sampler(D_diag, Phi, y_aug / sigma) | |
# | |
# Use slice sampling on `eta = 1 / lambda**2` | |
# | |
etas = 1.0 / np.power(lambdas, 2) | |
u_eta = np.random.uniform(0, 1.0 / (1 + etas)) | |
exp_rate = np.power(beta, 2) / (2 * sigma2 * tau2) | |
slice_upper_lim = (1 - u_eta) / u_eta | |
# SciPy's truncated sampler needs an upper limit parameter that's | |
# manually scaled by its `scale` parameter: e.g. | |
# scipy.stats.truncexpon.rvs(upper_lim / scale, scale=scale) | |
etas = scipy.stats.truncexpon.rvs( | |
exp_rate / slice_upper_lim, scale=1 / exp_rate | |
) | |
lambdas = 1 / np.sqrt(etas) | |
trace["beta"].append(beta) | |
trace["lambda"].append(lambdas) | |
return trace | |
with np.errstate(over="raise"): | |
np.random.seed(90923) | |
start_time = time.perf_counter() | |
sample_trace = hs_gibbs(sim_data, 100, tau2=1) | |
end_time = time.perf_counter() | |
time_diff = end_time - start_time | |
sample_rate = len(sample_trace["beta"]) / time_diff | |
print(sample_rate) | |
beta_samples = np.asarray(sample_trace["beta"]) | |
beta_residuals = beta_samples - true_beta | |
beta_mean = beta_samples.mean(0) | |
(beta_mean - true_beta).mean() | |
# 0.5483206279599594 | |
# %matplotlib qt | |
aehmc_trace = az.from_dict( | |
posterior={k: np.asarray([v]) for k, v in sample_trace.items()} | |
) | |
# ax = az.plot_trace(aehmc_trace) | |
beta_subset = aehmc_trace.posterior["beta"].to_dataframe() | |
# Let's look at the terms that are known to be non-zero... | |
plot_slice = slice(0, 100) | |
ax = beta_subset.loc[(0, slice(None), plot_slice)].boxplot( | |
by="beta_dim_0", column="beta", rot=90 | |
) | |
plt.scatter( | |
np.arange(plot_slice.stop - plot_slice.start) + 1, | |
true_beta[plot_slice], | |
color="red", | |
label="true_beta", | |
) | |
# plt.yscale("symlog") | |
plt.legend() | |
plt.tight_layout() | |
# Let's look at the terms that are known to be zero... | |
plot_slice = slice(true_beta.shape[0] - 200, true_beta.shape[0]) | |
ax = beta_subset.loc[(0, slice(None), plot_slice)].boxplot( | |
by="beta_dim_0", column="beta", rot=90 | |
) | |
plt.scatter( | |
np.arange(plot_slice.stop - plot_slice.start) + 1, | |
true_beta[plot_slice], | |
color="red", | |
label="true_beta", | |
) | |
plt.yscale("symlog") | |
plt.legend() | |
plt.tight_layout() | |
# TODO: 10675 has way too much variance; is that a numerical issue? |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment