Created
June 22, 2013 21:58
-
-
Save bravoecho/5842768 to your computer and use it in GitHub Desktop.
Normally distributed random values
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env ruby | |
require 'securerandom' | |
require 'pp' | |
# NormalRand is an attempt to port the Java implementation from Wikipedia | |
# <https://en.wikipedia.org/wiki/Marsaglia_polar_method> | |
# | |
# private static double spare; | |
# private static boolean isSpareReady = false; | |
# | |
# public static synchronized double getGaussian(double mean, double stdDev) { | |
# if (isSpareReady) { | |
# isSpareReady = false; | |
# return spare * stdDev + mean; | |
# } else { | |
# double u, v, s; | |
# do { | |
# u = Math.random() * 2 - 1; | |
# v = Math.random() * 2 - 1; | |
# s = u * u + v * v; | |
# } while (s >= 1 || s == 0); | |
# double mul = Math.sqrt(-2.0 * Math.log(s) / s); | |
# spare = v * mul; | |
# isSpareReady = true; | |
# return mean + stdDev * u * mul; | |
# } | |
# } | |
class NormalRand | |
include Enumerable | |
RAND_GEN = SecureRandom.method(:random_number) | |
def initialize(options = {}) | |
@mean = options.fetch(:mean) | |
@stddev = options.fetch(:stddev) | |
@rand_gen = options.fetch(:rand_gen, RAND_GEN) | |
end | |
def next | |
enumerator.next | |
end | |
def each | |
if block_given? | |
enumerator.each { |value| yield value } | |
else | |
enumerator.each | |
end | |
end | |
# Create a hash of the frequency of n random values classified by the | |
# corresponding rounded integer. | |
# Useful for testing purposes, to check if the random values actually | |
# satisfy a normal distribution. | |
def rounded_frequencies(n_values) | |
pairs = self.take(n_values) | |
.group_by { |float| float.round } | |
.map { |rounded_value, close_values| [rounded_value, close_values.size] } | |
.sort | |
Hash[pairs] | |
end | |
private | |
def enumerator | |
@enumerator ||= Enumerator.new do |yielder| | |
loop do | |
if @next_gaussian_rand | |
yielder.yield @next_gaussian_rand | |
@next_gaussian_rand = nil | |
else | |
x, y, s = 0, 0, 0 | |
loop do | |
x = rand_between_minus_1_and_1 | |
y = rand_between_minus_1_and_1 | |
s = x**2 + y**2 | |
break if 0 < s && s < 1 | |
end | |
coeff = Math.sqrt(-2.0 * Math.log(s) / s) | |
@next_gaussian_rand = @mean + @stddev * y * coeff | |
yielder.yield @mean + @stddev * x * coeff | |
end | |
end | |
end | |
end | |
def rand_between_minus_1_and_1 | |
@rand_gen.() * 2 - 1 | |
end | |
end | |
# This is to verify that the gaussian random generator is working reasonably | |
class NormalDistribution | |
def initialize(options={}) | |
@mean = options.fetch(:mean) | |
@stddev = options.fetch(:stddev) | |
@sample_size = options.fetch(:sample_size, 1) | |
end | |
def f(x) | |
coeff = 1 / (@stddev * Math.sqrt(2 * Math::PI)) | |
exp = - (x - @mean)**2 / (2 * @stddev**2) | |
coeff * (Math::E**exp) | |
end | |
def for_range(range, step=1) | |
{}.tap do |result| | |
range.step(step).each { |x| result[x] = f(x) * @sample_size } | |
end | |
end | |
end | |
# Made up values | |
mean = 23.098 | |
stddev = 4.420 | |
random_gaussian = NormalRand.new(mean: mean, stddev: stddev) | |
random_gaussian_frequencies = random_gaussian.rounded_frequencies(30_000) | |
pp random_gaussian_frequencies | |
pp random_gaussian_frequencies.values.inject(:+) | |
################################################################################ | |
normal_distribution = NormalDistribution.new(mean: mean, stddev: stddev, sample_size: 30_000) | |
pp normal_distribution.for_range(0..50) | |
pp normal_distribution.for_range(0..50).values.inject(:+) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment