Created
November 4, 2018 09:09
-
-
Save breadplop/0014877e42f3bc7774ba51ab32db21bb to your computer and use it in GitHub Desktop.
BT4221 Assignment 4 Question 2
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# https://paper.dropbox.com/doc/Assignment-4--AQAaS_sEpPtBSwlJT9IK8u3qAg-AbLDwYkKF1jWLBcH7aM0J | |
from __future__ import print_function | |
import keras | |
from keras.datasets import mnist | |
from keras.models import Model | |
from keras.layers import Input, Dense, Flatten | |
from keras.layers import Dense, Activation | |
from keras.layers import SimpleRNN | |
from keras import initializers | |
from keras.optimizers import RMSprop | |
batch_size = 32 | |
num_classes = 10 | |
epochs = 10 | |
#hidden_units = 100 | |
#learning_rate = 1e-6 | |
# the data, shuffled and split between train and test sets | |
(x_train, y_train), (x_test, y_test) = mnist.load_data() | |
x_train = x_train.reshape(x_train.shape[0], -1, 1) | |
x_test = x_test.reshape(x_test.shape[0], -1, 1) | |
x_train = x_train.astype('float32') | |
x_test = x_test.astype('float32') | |
x_train /= 255 | |
x_test /= 255 | |
print('x_train shape:', x_train.shape) | |
print(x_train.shape[0], 'train samples') | |
print(x_test.shape[0], 'test samples') | |
# Convert class vectors to binary class matrices | |
y_train = keras.utils.to_categorical(y_train, num_classes) | |
y_test = keras.utils.to_categorical(y_test, num_classes) | |
print('Evaluate RNN...') | |
#''' | |
# Create Model | |
input_layer = Input(shape=(784,1)) #input layer | |
#layer = Dense(10, activation='tanh')(input_layer) #hidden layer | |
#output_layer = Dense(1, activation = 'sigmoid')(layer) #output layer | |
#output_layer = Dense(784,)(input_layer) | |
layers= Dense(10, activation='tanh')(input_layer) | |
layers = Flatten()(layers) | |
output_layer=Dense(10, activation='sigmoid')(layers) | |
model = Model(inputs=input_layer, outputs= output_layer) #i get an error | |
# Compile Model | |
model.compile(loss='categorical_crossentropy', | |
optimizer='Adagrad', | |
metrics=['accuracy']) | |
# Fit Model | |
model.fit(x_train, y_train, | |
batch_size=batch_size, | |
epochs=epochs, | |
verbose=1, | |
validation_data=(x_test, y_test)) | |
# Evaluate Model | |
scores = model.evaluate(x_test, y_test, verbose=0) | |
print('RNN test score:', scores[0]) | |
print('RNN test accuracy:', scores[1]) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment