Last active
April 18, 2019 13:53
-
-
Save breeko/69e54a4e77229618efeb468fc97c90bf to your computer and use it in GitHub Desktop.
Skittles Distribution
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
from collections import Counter | |
from matplotlib import pyplot as plt | |
import argparse | |
parser = argparse.ArgumentParser() | |
parser.add_argument("-n", "--num-trials", help="number of trials to run", type=int, default=1000) | |
parser.add_argument("-s", "--std", help="standard deviation of num of skittles", type=float, default=2) | |
parser.add_argument("-o", "--out", help="historgram out location", type=str, default="out.png") | |
args = parser.parse_args() | |
NUM_SKITTLES_MEAN = 59.2736 | |
def get_bag(std_dist): | |
num_skittles = int(NUM_SKITTLES_MEAN + (np.random.standard_normal() * std_dist)) | |
bag_raw = np.random.choice(["r","o","y","g","p"], size=num_skittles, replace=True) | |
bag_count = Counter(bag_raw) | |
bag = ";".join(sorted(["{}:{}".format(k[0],v) for k,v in bag_count.items()])) | |
return bag | |
def find_match(max_attempts=10**8, std_dist=2, stop_after_match=True, verbose=True): | |
all_bags = {} | |
for cur_num in range(max_attempts): | |
cur_bag = get_bag(std_dist=std_dist) | |
prior = all_bags.get(cur_bag, []) | |
all_bags[cur_bag] = prior + [cur_num] | |
if len(prior) > 0: | |
if verbose: | |
print("Matching pair found!") | |
prior_nums = ",".join([str(p) for p in prior]) | |
print("#{} bag matches #{}".format(prior_nums, cur_num)) | |
if stop_after_match: | |
return cur_num | |
def run_trials(num_trials, std_dist=2): | |
trials = [find_match(std_dist=std_dist,verbose=False) for _ in range(num_trials)] | |
return trials | |
if __name__ == "__main__": | |
trials = run_trials(args.num_trials, std_dist=args.std) | |
trials_hist=plt.hist(trials, bins=100) | |
plt.title('N: {} std {} mean: {:0.2f} median: {:0.2f} std: {:0.2f} 95% {:0.2f}'.format( | |
args.num_trials, args.std, np.mean(trials), np.median(trials), np.std(trials), np.percentile(trials,95))) | |
plt.gcf().savefig(args.out) | |
plt.clf() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment