-
-
Save brendancol/96e2e08dbab57ff3b1c0375b043b63b6 to your computer and use it in GitHub Desktop.
Ethnicity from baby names NYC
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from sklearn.ensemble import RandomForestClassifier | |
from sklearn import preprocessing | |
import pandas as pd | |
import numpy as np | |
from functools import partial | |
def encode_data(df, cols): | |
encoders = dict() | |
for c in cols: | |
le = preprocessing.LabelEncoder() | |
le.fit(df[c]) | |
df[c] = le.transform(df[c]) | |
encoders[c] = le | |
return df, encoders | |
# encode categorical values as ints | |
df = pd.read_csv('nyc_babies.csv') | |
eth_norm = lambda r, race: race if race in r['ETHCTY'] else r['ETHCTY'] | |
df['ETHCTY'] = df.apply(partial(eth_norm, race='ASIAN'), axis=1) | |
df['ETHCTY'] = df.apply(partial(eth_norm, race='BLACK'), axis=1) | |
df['ETHCTY'] = df.apply(partial(eth_norm, race='WHITE'), axis=1) | |
df, encoders = encode_data(df, ['BRTH_YR', 'GNDR', 'ETHCTY', 'NM']) | |
# duplicate row based on count field | |
rdf = pd.DataFrame(np.repeat(df.values, df['CNT'].values, axis=0)) | |
rdf.columns = df.columns | |
# divide up training and test data | |
rdf['is_train'] = np.random.uniform(0, 1, len(rdf)) <= .75 | |
train, test = rdf[rdf['is_train']], rdf[~rdf['is_train']] | |
# create, fit, predict | |
features = ['NM', 'GNDR', 'BRTH_YR'] | |
clf = RandomForestClassifier(n_jobs=4) | |
clf.fit(train[features], train['ETHCTY']) | |
pred = clf.predict(test[features]) | |
pred = encoders['ETHCTY'].inverse_transform(pred) | |
actual_names = encoders['ETHCTY'].inverse_transform(test['ETHCTY']) | |
ct = pd.crosstab(actual_names, | |
pred, | |
rownames=['actual'], | |
colnames=['preds']).apply(lambda r: r/r.sum(), axis=1) | |
print(ct) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment