Created
January 8, 2025 21:29
-
-
Save brendano/02091efe3aaf1fc8e776aeb92c4e9453 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
% booktabs example for hierarchical columns | |
% for Table 2 of | |
% https://aclanthology.org/2021.findings-acl.371.pdf | |
% halterman, keith, sarwar, o'connor, 2021 | |
% leaving out some stuff | |
% just the 'tabular' environ | |
% the minipage stuff is irrelevant it was just for a two column thing | |
\setlength{\tabcolsep}{5pt} %% BTO: i think this controls spacing between columns. https://www.overleaf.com/learn/latex/Questions/How_do_I_change_column_or_row_separation_in_LaTeX_tables%3F | |
% \newcommand{\ap}{AP ($\uparrow$)} | |
% \newcommand{\pr}{PR ($\downarrow$)} | |
\newcommand{\fscore}{{\footnotesize F1 $\uparrow$}} | |
\newcommand{\ap}{{\footnotesize AP $\uparrow$}} | |
\newcommand{\pr}{{\footnotesize PR $\downarrow$}} | |
\newcommand{\mae}{{\footnotesize MAE $\downarrow$}} | |
\newcommand{\myrho}{{\footnotesize $\rho\uparrow$}} | |
\begin{figure*}[h!] %https://tex.stackexchange.com/questions/271347/minipage-across-two-columns | |
\noindent\begin{minipage}{\linewidth} | |
\centering | |
\begin{tabular}{l cc cccccc cc} | |
% \toprule | |
& \multicolumn{2}{c}{\textit{Task 1: Sent.\ Cls.}} | |
& \multicolumn{6}{c}{\textit{Task 2: Document Ranking}} | |
& \multicolumn{2}{c}{\textit{Task 3: Temp. Aggs.}}\\ | |
\cmidrule(lr){2-3} \cmidrule(lr){4-9} \cmidrule(lr) {10-11} | |
& \multirow{1}{*}{Keyw.} | |
& \multirow{1}{*}{\shortstack[l]{R+MNLI}} | |
& \multicolumn{2}{c}{ | |
\multirow{1}{*}{BM25}} | |
& \multicolumn{2}{c}{ | |
\multirow{1}{*}{\shortstack[l]{E+MSM}} } | |
& \multicolumn{2}{c}{ | |
\multirow{1}{*}{\shortstack[l]{R+MNLI}}} | |
& Keyw. | |
& R+MNLI | |
\\ | |
% &&&&&&& \\ | |
Event Class & \fscore & \fscore & \ap& \pr & \ap & \pr & \ap& \pr & \myrho & \myrho \\ | |
\cmidrule(r){1-1} | |
\cmidrule(lr){2-2} | |
\cmidrule(lr){3-3} | |
\cmidrule(lr){4-5} | |
\cmidrule(lr){6-7} | |
\cmidrule(lr){8-9} | |
\cmidrule(lr){10-10} | |
\cmidrule(lr){11-11} | |
%\cmidrule(lr){12-13} | |
{\small \killLabel} &0.50&\textbf{0.74}&0.30&0.29&0.65&0.27&\textbf{0.96}&\textbf{0.05}& 0.70 & \textbf{0.78}\\ | |
{\small \arrestLabel} &0.48&\textbf{0.62}&0.68&0.36&0.72&0.67&\textbf{0.91}&\textbf{0.17} & 0.71 & \textbf{0.85}\\ | |
{\small \failLabel} &0.05&\textbf{0.48}&0.27&0.77&0.36&0.87&\textbf{0.63}&\textbf{0.76} & 0.42 & \textbf{0.60}\\ | |
{\small \forceLabel} &\textbf{0.65}&0.62&0.24&0.43&0.64&0.45&\textbf{0.90}&\textbf{0.20}& \textbf{0.89} & 0.86\\ | |
{\small \allLabel} &\textbf{0.67}&0.57&0.53&0.85&0.83&0.88&\textbf{0.89}&\textbf{0.62}& 0.86 & \textbf{0.90}\\ | |
\bottomrule | |
\end{tabular} | |
%%%%%%%%%%%%%%% | |
\captionof{table}{ Evaluation of two classification methods (Keyw., R+MNLI) and three ranking models (BM25, E+MSM, R+MNLI) for \textsc{IndiaPoliceEvents}'s three tasks. Bolded numbers indicate the model that performs best on each metric and event class. \textbf{Task 1} evaluates sentence-level F1 for sentence-level keyword matching (Keyw.) and RoBERTa fine-tuned on MNLI (R+MNLI) \cite{liu2019roberta}. \textbf{Task 2} evaluates average precision (AP) and proportion of the corpus needed to be read in order to achieve 95\% recall (PR, or PropRead@Recall95) for ranking models BM25 \cite{anserini}, off-the-shelf ELECTRA language model fine-tuned on MS MARCO (E+MSM; \cite{reimers2019sentence}), as well as R+MNLI's probabilistic output. \textbf{Task 3} evaluates Spearman's rank correlation coefficient ($\rho$) between predicted versus gold-standard counts of documents with the relevant event, for each day in March 2002. | |
For each metric, we indicate whether a higher ($\uparrow$) or lower ($\downarrow$) score is better. \label{t:results-big-table}} | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment