Last active
June 27, 2019 17:00
-
-
Save brendano/b93e1571c38fea904c51d13f470b894e to your computer and use it in GitHub Desktop.
google ngram books plot
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
d=read.csv("out.csv") | |
head(d) | |
names(d) | |
d[1,] | |
3[,c(1,4,8)] | |
d[,c(1,4,8)] | |
x=d[,c(1,4,8)] | |
head(x) | |
melt(x) | |
spread(x) | |
?spread | |
gather | |
?gather | |
gather(d[,c(1,4,8)]) | |
d$t=1980:(1980-1+nrow(d)) | |
d | |
gather(d[,c(1,4,8)]) | |
gather(d[,c(1,4,8)],key='t') | |
head(d,1) | |
gather(d[,c(1,4,8,'t')],key='t') | |
ncol(d) | |
gather(d[,c(1,4,8,11)],key='t') | |
gather(d[,c(1,4,8,'t')],key='t') %>% head | |
gather(d[,c(1,4,8,11)],key='t') %>% head | |
gather(d[,c(1,4,8,11)],key='t',value='ngram') %>% head | |
x=gather(d[,c(1,4,8,11)],key='t'); names(x)[2]="ngram" | |
head(x) | |
qplot(t,value,data=x,colour='ngram') | |
gg() | |
qplot(t,value,data=x,colour='ngram') | |
qplot(t,value,data=x,colour=ngram) | |
qplot(t,value,data=x,colour=ngram, geom=) | |
qplot(t,value,data=x,colour=ngram, geom=c('line','point')) | |
qplot(t,value,data=x,colour=ngram, geom=c('line','point'), log='y') |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Data from | |
https://books.google.com/ngrams/graph?content=%22cognitive+science%22%2C%22artificial+intelligence%22%2C%22machine+learning%22&case_insensitive=on&year_start=1980&year_end=2008&corpus=15&smoothing=3&share=&direct_url=t4%3B%2C%22%20cognitive%20science%20%22%3B%2Cc0%3B%2Cs0%3B%3B%22%20cognitive%20science%20%22%3B%2Cc0%3B%3B%22%20Cognitive%20Science%20%22%3B%2Cc0%3B.t4%3B%2C%22%20artificial%20intelligence%20%22%3B%2Cc0%3B%2Cs0%3B%3B%22%20artificial%20intelligence%20%22%3B%2Cc0%3B%3B%22%20Artificial%20Intelligence%20%22%3B%2Cc0%3B%3B%22%20Artificial%20intelligence%20%22%3B%2Cc0%3B.t4%3B%2C%22%20machine%20learning%20%22%3B%2Cc0%3B%2Cs0%3B%3B%22%20machine%20learning%20%22%3B%2Cc0%3B%3B%22%20Machine%20Learning%20%22%3B%2Cc0#t4%3B%2C%22%20cognitive%20science%20%22%3B%2Cc0%3B%2Cs0%3B%3B%22%20cognitive%20science%20%22%3B%2Cc0%3B%3B%22%20Cognitive%20Science%20%22%3B%2Cc0%3B.t4%3B%2C%22%20artificial%20intelligence%20%22%3B%2Cc0%3B%2Cs0%3B%3B%22%20artificial%20intelligence%20%22%3B%2Cc0%3B%3B%22%20Artificial%20Intelligence%20%22%3B%2Cc0%3B%3B%22%20Artificial%20intelligence%20%22%3B%2Cc0%3B.t4%3B%2C%22%20machine%20learning%20%22%3B%2Cc0%3B%2Cs0%3B%3B%22%20machine%20learning%20%22%3B%2Cc0%3B%3B%22%20Machine%20Learning%20%22%3B%2Cc0 | |
copy and paste "var data" line into => data.txt | |
Commands after that: | |
~/Desktop/ngram_trends_ai % python get.py > out.csv | |
$ R | |
> d=read.csv("out.csv") | |
> d$t=1980:(1980-1+nrow(d)) | |
> x=gather(d[,c(1,4,8,11)],key='t'); names(x)[2]="ngram" | |
> qplot(t,value,data=x,colour=ngram, geom=c('line','point'), log='y') | |
Output in: Rplot.pdf |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
var data = [{"ngram": "" cognitive science " (All)", "type": "CASE_INSENSITIVE", "timeseries": [1.988285345394525e-09, 1.7889791814607038e-09, 2.3565464302155448e-09, 2.5652787751160945e-09, 3.0793829728211925e-09, 3.296852761030295e-09, 3.7145815253079662e-09, 4.1995486433592845e-09, 4.690783701942282e-09, 4.800356035291768e-09, 5.018061000458143e-09, 5.3018152903642044e-09, 5.530524453083758e-09, 5.431870035115567e-09, 5.432463155906144e-09, 5.503084684372566e-09, 5.539179206584929e-09, 5.2331939932275566e-09, 4.703808584701921e-09, 4.348608251270036e-09, 4.178451701705325e-09, 3.749049818606893e-09, 3.348010010102114e-09, 3.2263143387048896e-09, 3.001070704444775e-09, 2.8223902371972615e-09, 2.7316326411489884e-09, 2.7214903677852397e-09, 2.7750903189988074e-09], "parent": ""}, {"ngram": "" cognitive science "", "type": "EXPANSION", "parent": "" cognitive science " (All)", "timeseries": [1.8215109143238095e-09, 1.6158894555751147e-09, 2.148176812359163e-09, 2.38667624552491e-09, 2.7813012765902964e-09, 3.0312720825495123e-09, 3.4260253760949003e-09, 3.856114990811019e-09, 4.3320366341756e-09, 4.47677070017757e-09, 4.594069505766843e-09, 4.879946859302566e-09, 5.054121819471545e-09, 4.944040795809965e-09, 4.94592842871709e-09, 5.02822031630704e-09, 5.054027862883004e-09, 4.78122798495763e-09, 4.3752795037781715e-09, 4.038539058726087e-09, 3.8807024895147285e-09, 3.5146172956095664e-09, 3.1455563867918303e-09, 3.0244904358767144e-09, 2.857193307345288e-09, 2.666465239085726e-09, 2.5918068432180994e-09, 2.58461434476942e-09, 2.6398108698977296e-09]}, {"ngram": "" Cognitive Science "", "type": "EXPANSION", "parent": "" cognitive science " (All)", "timeseries": [1.6677443107071532e-10, 1.73089725885589e-10, 2.0836961785638172e-10, 1.7860252959118432e-10, 2.98081696230896e-10, 2.6558067848078283e-10, 2.8855614921306586e-10, 3.4343365254826553e-10, 3.587470677666817e-10, 3.235853351141975e-10, 4.239914946913004e-10, 4.218684310616386e-10, 4.764026336122131e-10, 4.878292393056022e-10, 4.865347271890538e-10, 4.748643680655259e-10, 4.851513437019252e-10, 4.5196600826992647e-10, 3.2852908092374985e-10, 3.1006919254394916e-10, 2.977492121905964e-10, 2.344325229973267e-10, 2.024536233102836e-10, 2.018239028281751e-10, 1.438773970994868e-10, 1.5592499811153563e-10, 1.3982579793088887e-10, 1.3687602301581948e-10, 1.352794491010778e-10]}, {"ngram": "" artificial intelligence " (All)", "type": "CASE_INSENSITIVE", "timeseries": [1.4524584965314169e-08, 1.645942996342242e-08, 1.926327901820753e-08, 2.0718613547021647e-08, 2.3277992263917976e-08, 2.644595978714851e-08, 2.8628305345382698e-08, 3.116548560492102e-08, 3.1549647592856086e-08, 3.121157824256419e-08, 3.0578806058707235e-08, 2.9286710437733835e-08, 2.651584762869419e-08, 2.414005418576488e-08, 2.2005876934175613e-08, 2.0355296674402978e-08, 1.7849577851495165e-08, 1.6332075703744716e-08, 1.502922459103598e-08, 1.4232912804683958e-08, 1.411945155635078e-08, 1.3288917989827198e-08, 1.273601415996417e-08, 1.269111644148462e-08, 1.2006758347480963e-08, 1.1474028727143095e-08, 1.1197858575580828e-08, 1.0778746017958697e-08, 1.0733540584118018e-08], "parent": ""}, {"ngram": "" artificial intelligence "", "type": "EXPANSION", "parent": "" artificial intelligence " (All)", "timeseries": [1.2215100930745848e-08, 1.3739098747578282e-08, 1.5681708672351153e-08, 1.6791667485043556e-08, 1.860523620881135e-08, 2.052665643808333e-08, 2.2170917546304736e-08, 2.390068257592962e-08, 2.3838826278068026e-08, 2.296393729141398e-08, 2.258575675690671e-08, 2.165806378684465e-08, 2.013926346324167e-08, 1.8447448774898996e-08, 1.711443964325099e-08, 1.610155107657972e-08, 1.4687722784044257e-08, 1.3396221021366728e-08, 1.2396914225324248e-08, 1.1422203627375893e-08, 1.1169280230863673e-08, 1.022643861655784e-08, 9.646290496537598e-09, 9.750849270874693e-09, 9.136875256388066e-09, 8.666873377701937e-09, 8.427884390371787e-09, 8.01124580007695e-09, 8.115831451327438e-09]}, {"ngram": "" Artificial Intelligence "", "type": "EXPANSION", "parent": "" artificial intelligence " (All)", "timeseries": [1.3226829354007208e-09, 1.6135288882779263e-09, 2.1782737280595654e-09, 2.5423264287433814e-09, 3.24110765210455e-09, 4.3825620117082e-09, 5.046234509618687e-09, 5.813224663547041e-09, 6.33315730017411e-09, 6.905929225301374e-09, 6.692562916553259e-09, 6.355629673342784e-09, 5.21912795521067e-09, 4.5926490071274935e-09, 3.9493915915400635e-09, 3.3685355933193203e-09, 2.5777147242119926e-09, 2.4519504680599523e-09, 2.2320659447722893e-09, 2.3688007904405187e-09, 2.465377679783387e-09, 2.570266729609979e-09, 2.6725859303411426e-09, 2.58853922423847e-09, 2.4379214995968415e-09, 2.418349568219672e-09, 2.4285986370090975e-09, 2.4660518294084e-09, 2.31252980653629e-09]}, {"ngram": "" Artificial intelligence "", "type": "EXPANSION", "parent": "" artificial intelligence " (All)", "timeseries": [9.868010991676002e-10, 1.1068023275662142e-09, 1.403296617796812e-09, 1.3846196332347104e-09, 1.4316484030020759e-09, 1.536741337356976e-09, 1.4111532894592722e-09, 1.4515783654443582e-09, 1.3776640146139535e-09, 1.3417117258488327e-09, 1.3004863852472681e-09, 1.2730169775464007e-09, 1.157456210241849e-09, 1.099956403738389e-09, 9.420456993845606e-10, 8.852100045039382e-10, 5.841403432389163e-10, 4.839042143180348e-10, 4.00244420939444e-10, 4.419083868675447e-10, 4.847936457037199e-10, 4.922126436593796e-10, 4.1713773308542963e-10, 3.5172794637145747e-10, 4.3196159149605506e-10, 3.888057812214843e-10, 3.4137554819994403e-10, 3.0144838847334656e-10, 3.051793262542901e-10]}, {"ngram": "" machine learning " (All)", "type": "CASE_INSENSITIVE", "timeseries": [4.844133115466942e-10, 3.8753064923735535e-10, 3.550062975069916e-10, 4.601145040369506e-10, 6.809790548916489e-10, 9.72570417058703e-10, 1.2469679772879924e-09, 1.712779319167674e-09, 1.8437270955993868e-09, 1.9548805411741453e-09, 1.8994633108456884e-09, 1.7959548630010401e-09, 1.5588977053671016e-09, 1.3116974371753442e-09, 7.284004669269198e-10, 7.253682892433793e-10, 7.221464775370683e-10, 7.561819563374682e-10, 7.785945202057728e-10, 1.0126548211086828e-09, 1.2013968986313017e-09, 1.3418451905167217e-09, 2.048401289859011e-09, 2.089761356024614e-09, 2.1129831257698277e-09, 2.0331732012276606e-09, 2.0353418117569078e-09, 2.009601096641944e-09, 2.2075689470879567e-09], "parent": ""}, {"ngram": "" machine learning "", "type": "EXPANSION", "parent": "" machine learning " (All)", "timeseries": [3.2129586144402644e-10, 2.5703668915522113e-10, 2.4626133077187973e-10, 2.370517056458711e-10, 3.8187721635678836e-10, 4.304757780396581e-10, 5.683286024333561e-10, 7.151002607524199e-10, 8.242234077788473e-10, 8.759610160240833e-10, 9.303153802875386e-10, 8.27868464257721e-10, 8.156260389302616e-10, 7.637784016356619e-10, 4.82764568400716e-10, 4.535886686093552e-10, 4.3455206298416623e-10, 4.3489211636644447e-10, 4.3946887597266585e-10, 5.233604482330583e-10, 6.140120297125153e-10, 6.791196652652534e-10, 1.1311481196152329e-09, 1.1789929033056978e-09, 1.2096197377076123e-09, 1.207196850419986e-09, 1.2681073321048804e-09, 1.2744093225158792e-09, 1.449749334470063e-09]}, {"ngram": "" Machine Learning "", "type": "EXPANSION", "parent": "" machine learning " (All)", "timeseries": [1.6311745010266776e-10, 1.3049396008213422e-10, 1.0874496673511184e-10, 2.230627983910795e-10, 2.9910183853486064e-10, 5.420946390190449e-10, 6.786393748546362e-10, 9.97679058415254e-10, 1.0195036878205395e-09, 1.078919525150062e-09, 9.6914793055815e-10, 9.68086398743319e-10, 7.4327166643684e-10, 5.479190355396822e-10, 2.4563589852620385e-10, 2.717796206340241e-10, 2.8759441455290206e-10, 3.212898399710237e-10, 3.39125644233107e-10, 4.892943728756244e-10, 5.873848689187864e-10, 6.627255252514682e-10, 9.172531702437783e-10, 9.107684527189162e-10, 9.033633880622155e-10, 8.259763508076747e-10, 7.672344796520273e-10, 7.351917741260649e-10, 7.578196126178938e-10]}]; | |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import json,re | |
d=open("data.txt").read() | |
x=json.loads(re.sub(r";\s*$","", re.sub(r".*= ","",d))) | |
print ','.join(z['ngram'] for z in x) | |
for t in range(len(x[0]['timeseries'])): | |
print ','.join(str(z['timeseries'][t]) for z in x) | |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
" cognitive science " (All) | " cognitive science " | " Cognitive Science " | " artificial intelligence " (All) | " artificial intelligence " | " Artificial Intelligence " | " Artificial intelligence " | " machine learning " (All) | " machine learning " | " Machine Learning " | |
---|---|---|---|---|---|---|---|---|---|---|
1.98828534539e-09 | 1.82151091432e-09 | 1.66774431071e-10 | 1.45245849653e-08 | 1.22151009307e-08 | 1.3226829354e-09 | 9.86801099168e-10 | 4.84413311547e-10 | 3.21295861444e-10 | 1.63117450103e-10 | |
1.78897918146e-09 | 1.61588945558e-09 | 1.73089725886e-10 | 1.64594299634e-08 | 1.37390987476e-08 | 1.61352888828e-09 | 1.10680232757e-09 | 3.87530649237e-10 | 2.57036689155e-10 | 1.30493960082e-10 | |
2.35654643022e-09 | 2.14817681236e-09 | 2.08369617856e-10 | 1.92632790182e-08 | 1.56817086724e-08 | 2.17827372806e-09 | 1.4032966178e-09 | 3.55006297507e-10 | 2.46261330772e-10 | 1.08744966735e-10 | |
2.56527877512e-09 | 2.38667624552e-09 | 1.78602529591e-10 | 2.0718613547e-08 | 1.6791667485e-08 | 2.54232642874e-09 | 1.38461963323e-09 | 4.60114504037e-10 | 2.37051705646e-10 | 2.23062798391e-10 | |
3.07938297282e-09 | 2.78130127659e-09 | 2.98081696231e-10 | 2.32779922639e-08 | 1.86052362088e-08 | 3.2411076521e-09 | 1.431648403e-09 | 6.80979054892e-10 | 3.81877216357e-10 | 2.99101838535e-10 | |
3.29685276103e-09 | 3.03127208255e-09 | 2.65580678481e-10 | 2.64459597871e-08 | 2.05266564381e-08 | 4.38256201171e-09 | 1.53674133736e-09 | 9.72570417059e-10 | 4.3047577804e-10 | 5.42094639019e-10 | |
3.71458152531e-09 | 3.42602537609e-09 | 2.88556149213e-10 | 2.86283053454e-08 | 2.21709175463e-08 | 5.04623450962e-09 | 1.41115328946e-09 | 1.24696797729e-09 | 5.68328602433e-10 | 6.78639374855e-10 | |
4.19954864336e-09 | 3.85611499081e-09 | 3.43433652548e-10 | 3.11654856049e-08 | 2.39006825759e-08 | 5.81322466355e-09 | 1.45157836544e-09 | 1.71277931917e-09 | 7.15100260752e-10 | 9.97679058415e-10 | |
4.69078370194e-09 | 4.33203663418e-09 | 3.58747067767e-10 | 3.15496475929e-08 | 2.38388262781e-08 | 6.33315730017e-09 | 1.37766401461e-09 | 1.8437270956e-09 | 8.24223407779e-10 | 1.01950368782e-09 | |
4.80035603529e-09 | 4.47677070018e-09 | 3.23585335114e-10 | 3.12115782426e-08 | 2.29639372914e-08 | 6.9059292253e-09 | 1.34171172585e-09 | 1.95488054117e-09 | 8.75961016024e-10 | 1.07891952515e-09 | |
5.01806100046e-09 | 4.59406950577e-09 | 4.23991494691e-10 | 3.05788060587e-08 | 2.25857567569e-08 | 6.69256291655e-09 | 1.30048638525e-09 | 1.89946331085e-09 | 9.30315380288e-10 | 9.69147930558e-10 | |
5.30181529036e-09 | 4.8799468593e-09 | 4.21868431062e-10 | 2.92867104377e-08 | 2.16580637868e-08 | 6.35562967334e-09 | 1.27301697755e-09 | 1.795954863e-09 | 8.27868464258e-10 | 9.68086398743e-10 | |
5.53052445308e-09 | 5.05412181947e-09 | 4.76402633612e-10 | 2.65158476287e-08 | 2.01392634632e-08 | 5.21912795521e-09 | 1.15745621024e-09 | 1.55889770537e-09 | 8.1562603893e-10 | 7.43271666437e-10 | |
5.43187003512e-09 | 4.94404079581e-09 | 4.87829239306e-10 | 2.41400541858e-08 | 1.84474487749e-08 | 4.59264900713e-09 | 1.09995640374e-09 | 1.31169743718e-09 | 7.63778401636e-10 | 5.4791903554e-10 | |
5.43246315591e-09 | 4.94592842872e-09 | 4.86534727189e-10 | 2.20058769342e-08 | 1.71144396433e-08 | 3.94939159154e-09 | 9.42045699385e-10 | 7.28400466927e-10 | 4.82764568401e-10 | 2.45635898526e-10 | |
5.50308468437e-09 | 5.02822031631e-09 | 4.74864368066e-10 | 2.03552966744e-08 | 1.61015510766e-08 | 3.36853559332e-09 | 8.85210004504e-10 | 7.25368289243e-10 | 4.53588668609e-10 | 2.71779620634e-10 | |
5.53917920658e-09 | 5.05402786288e-09 | 4.85151343702e-10 | 1.78495778515e-08 | 1.4687722784e-08 | 2.57771472421e-09 | 5.84140343239e-10 | 7.22146477537e-10 | 4.34552062984e-10 | 2.87594414553e-10 | |
5.23319399323e-09 | 4.78122798496e-09 | 4.5196600827e-10 | 1.63320757037e-08 | 1.33962210214e-08 | 2.45195046806e-09 | 4.83904214318e-10 | 7.56181956337e-10 | 4.34892116366e-10 | 3.21289839971e-10 | |
4.7038085847e-09 | 4.37527950378e-09 | 3.28529080924e-10 | 1.5029224591e-08 | 1.23969142253e-08 | 2.23206594477e-09 | 4.00244420939e-10 | 7.78594520206e-10 | 4.39468875973e-10 | 3.39125644233e-10 | |
4.34860825127e-09 | 4.03853905873e-09 | 3.10069192544e-10 | 1.42329128047e-08 | 1.14222036274e-08 | 2.36880079044e-09 | 4.41908386868e-10 | 1.01265482111e-09 | 5.23360448233e-10 | 4.89294372876e-10 | |
4.17845170171e-09 | 3.88070248951e-09 | 2.97749212191e-10 | 1.41194515564e-08 | 1.11692802309e-08 | 2.46537767978e-09 | 4.84793645704e-10 | 1.20139689863e-09 | 6.14012029713e-10 | 5.87384868919e-10 | |
3.74904981861e-09 | 3.51461729561e-09 | 2.34432522997e-10 | 1.32889179898e-08 | 1.02264386166e-08 | 2.57026672961e-09 | 4.92212643659e-10 | 1.34184519052e-09 | 6.79119665265e-10 | 6.62725525251e-10 | |
3.3480100101e-09 | 3.14555638679e-09 | 2.0245362331e-10 | 1.273601416e-08 | 9.64629049654e-09 | 2.67258593034e-09 | 4.17137733085e-10 | 2.04840128986e-09 | 1.13114811962e-09 | 9.17253170244e-10 | |
3.2263143387e-09 | 3.02449043588e-09 | 2.01823902828e-10 | 1.26911164415e-08 | 9.75084927087e-09 | 2.58853922424e-09 | 3.51727946371e-10 | 2.08976135602e-09 | 1.17899290331e-09 | 9.10768452719e-10 | |
3.00107070444e-09 | 2.85719330735e-09 | 1.43877397099e-10 | 1.20067583475e-08 | 9.13687525639e-09 | 2.4379214996e-09 | 4.31961591496e-10 | 2.11298312577e-09 | 1.20961973771e-09 | 9.03363388062e-10 | |
2.8223902372e-09 | 2.66646523909e-09 | 1.55924998112e-10 | 1.14740287271e-08 | 8.6668733777e-09 | 2.41834956822e-09 | 3.88805781221e-10 | 2.03317320123e-09 | 1.20719685042e-09 | 8.25976350808e-10 | |
2.73163264115e-09 | 2.59180684322e-09 | 1.39825797931e-10 | 1.11978585756e-08 | 8.42788439037e-09 | 2.42859863701e-09 | 3.413755482e-10 | 2.03534181176e-09 | 1.2681073321e-09 | 7.67234479652e-10 | |
2.72149036779e-09 | 2.58461434477e-09 | 1.36876023016e-10 | 1.0778746018e-08 | 8.01124580008e-09 | 2.46605182941e-09 | 3.01448388473e-10 | 2.00960109664e-09 | 1.27440932252e-09 | 7.35191774126e-10 | |
2.775090319e-09 | 2.6398108699e-09 | 1.35279449101e-10 | 1.07335405841e-08 | 8.11583145133e-09 | 2.31252980654e-09 | 3.05179326254e-10 | 2.20756894709e-09 | 1.44974933447e-09 | 7.57819612618e-10 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
test test |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment