Created
October 23, 2018 02:47
-
-
Save briansp2020/c532898bb4a63a65d37281536df850e2 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
root@Ryzen1800X:~/pytorch/test# python run_test.py | |
Running test_autograd ... | |
............................................................................................s..................................### HCC STATUS_CHECK Error: HSA_STATUS_ERROR_INVALID_ISA (0x100f) at file:mcwamp_hsa.cpp line:1156 | |
Traceback (most recent call last): | |
File "run_test.py", line 391, in <module> | |
main() | |
File "run_test.py", line 383, in main | |
raise RuntimeError(message) | |
RuntimeError: test_autograd failed! Received signal: SIGIOT | |
root@Ryzen1800X:~/pytorch/test# python test_torch.py | |
.................................EF..............................sss............s...............E..........................ss...................................................s..........................................test_torch.py:2540: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than tensor.new_tensor(sourceTensor). | |
res2 = expected.new_tensor(expected) | |
test_torch.py:2544: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than tensor.new_tensor(sourceTensor). | |
res2 = expected.new_tensor(expected, dtype=torch.int) | |
......E...........s.THCudaCheck FAIL file=/root/pytorch/aten/src/THC/generic/THCTensorMath.cu line=25 error=1011 : hipErrorInvalidValue | |
E.........F................................................................s.................s..............test_torch.py:2180: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor). | |
assertEqual('cpu', lambda: torch.tensor(torch.ones((2, 3), dtype=torch.float32), device='cpu:0')) | |
test_torch.py:2193: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor). | |
assertEqual('cuda:0', lambda: torch.tensor(torch.ones((2, 3), dtype=torch.float32), device='cuda:0')) | |
.Etest_torch.py:2395: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor). | |
res2 = torch.tensor(expected) | |
test_torch.py:2400: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor). | |
res2 = torch.tensor(expected, dtype=torch.int) | |
.test_torch.py:2424: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor). | |
check_copy(torch.tensor(source), True, False) | |
test_torch.py:2425: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor). | |
check_copy(torch.tensor(source, requires_grad=False), True, False) | |
test_torch.py:2426: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor). | |
check_copy(torch.tensor(source, requires_grad=True), True, True) | |
test_torch.py:2430: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than tensor.new_tensor(sourceTensor). | |
check_copy(copy.new_tensor(source), True, False) | |
test_torch.py:2431: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than tensor.new_tensor(sourceTensor). | |
check_copy(copy.new_tensor(source, requires_grad=False), True, False) | |
test_torch.py:2432: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than tensor.new_tensor(sourceTensor). | |
check_copy(copy.new_tensor(source, requires_grad=True), True, True) | |
......E...........................ss...s. | |
====================================================================== | |
ERROR: test_blas_alpha_beta_empty (__main__.TestTorch) | |
---------------------------------------------------------------------- | |
Traceback (most recent call last): | |
File "/root/pytorch/test/common.py", line 111, in wrapper | |
fn(*args, **kwargs) | |
File "test_torch.py", line 6817, in test_blas_alpha_beta_empty | |
torch.addmv(input=input, mat=mat, vec=vec, alpha=alpha, beta=beta)) | |
RuntimeError: cublas runtime error : an invalid numeric value was used as an argument at /root/pytorch/aten/src/THC/THCBlas.cu:146 | |
====================================================================== | |
ERROR: test_dim_function_empty (__main__.TestTorch) | |
---------------------------------------------------------------------- | |
Traceback (most recent call last): | |
File "/root/pytorch/test/common.py", line 111, in wrapper | |
fn(*args, **kwargs) | |
File "test_torch.py", line 6657, in test_dim_function_empty | |
self.assertEqual([shape, shape], [z.shape for z in torch.sort(x, dim=0)]) | |
RuntimeError: invalid argument 2: out of range at /root/pytorch/aten/src/THC/generic/THCTensor.cpp:380 | |
====================================================================== | |
ERROR: test_norm_cuda (__main__.TestTorch) | |
---------------------------------------------------------------------- | |
Traceback (most recent call last): | |
File "/root/pytorch/test/common.py", line 111, in wrapper | |
fn(*args, **kwargs) | |
File "test_torch.py", line 871, in test_norm_cuda | |
self._test_norm(self, device='cuda') | |
File "test_torch.py", line 858, in _test_norm | |
res = x.norm(p).cpu().numpy() | |
File "/usr/local/lib/python3.6/dist-packages/torch/tensor.py", line 246, in norm | |
return torch.norm(self, p, dim, keepdim) | |
File "/usr/local/lib/python3.6/dist-packages/torch/functional.py", line 719, in norm | |
torch._C._VariableFunctions.nuclear_norm(input, keepdim=keepdim) | |
RuntimeError: No CUDA implementation of 'gesdd'. Install MAGMA and rebuild cutorch (http://icl.cs.utk.edu/magma/) at /root/pytorch/aten/src/THC/generic/THCTensorMathMagma.cu:333 | |
====================================================================== | |
ERROR: test_pairwise_distance_empty (__main__.TestTorch) | |
---------------------------------------------------------------------- | |
Traceback (most recent call last): | |
File "/root/pytorch/test/common.py", line 111, in wrapper | |
fn(*args, **kwargs) | |
File "test_torch.py", line 1088, in test_pairwise_distance_empty | |
self.assertEqual(torch.zeros(0, device=device), torch.pairwise_distance(x, y)) | |
RuntimeError: cuda runtime error (1011) : hipErrorInvalidValue at /root/pytorch/aten/src/THC/generic/THCTensorMath.cu:25 | |
====================================================================== | |
ERROR: test_tensor_factories_empty (__main__.TestTorch) | |
---------------------------------------------------------------------- | |
Traceback (most recent call last): | |
File "/root/pytorch/test/common.py", line 111, in wrapper | |
fn(*args, **kwargs) | |
File "test_torch.py", line 2500, in test_tensor_factories_empty | |
self.assertEqual(shape, torch.zeros(shape, device=device).shape) | |
RuntimeError: cuda runtime error (1011) : hipErrorInvalidValue at /root/pytorch/aten/src/THC/generic/THCTensorMath.cu:25 | |
====================================================================== | |
ERROR: test_tensor_shape_empty (__main__.TestTorch) | |
---------------------------------------------------------------------- | |
Traceback (most recent call last): | |
File "/root/pytorch/test/common.py", line 111, in wrapper | |
fn(*args, **kwargs) | |
File "test_torch.py", line 6585, in test_tensor_shape_empty | |
self.assertEqual((0, 0), torch.diagflat(torch.tensor([], device=device)).shape) | |
RuntimeError: cuda runtime error (1011) : hipErrorInvalidValue at /root/pytorch/aten/src/THC/generic/THCTensorMath.cu:25 | |
====================================================================== | |
FAIL: test_blas_empty (__main__.TestTorch) | |
---------------------------------------------------------------------- | |
Traceback (most recent call last): | |
File "/root/pytorch/test/common.py", line 111, in wrapper | |
fn(*args, **kwargs) | |
File "test_torch.py", line 6748, in test_blas_empty | |
self.assertEqual(torch.zeros((5, 6), device=device), fn(torch.mm, (5, 0), (0, 6))) | |
File "/root/pytorch/test/common.py", line 374, in assertEqual | |
assertTensorsEqual(x, y) | |
File "/root/pytorch/test/common.py", line 366, in assertTensorsEqual | |
self.assertLessEqual(max_err, prec, message) | |
AssertionError: tensor(3.1855, device='cuda:0') not less than or equal to 1e-05 : | |
====================================================================== | |
FAIL: test_pin_memory (__main__.TestTorch) | |
---------------------------------------------------------------------- | |
Traceback (most recent call last): | |
File "/root/pytorch/test/common.py", line 111, in wrapper | |
fn(*args, **kwargs) | |
File "test_torch.py", line 8234, in test_pin_memory | |
self.assertTrue(pinned.is_pinned()) | |
AssertionError: False is not true | |
---------------------------------------------------------------------- | |
Ran 391 tests in 58.126s | |
FAILED (failures=2, errors=6, skipped=13) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment