Skip to content

Instantly share code, notes, and snippets.

@brianv0
Last active May 5, 2017 05:47
Show Gist options
  • Save brianv0/2146dad93b703a2d86d9bb7264b3225a to your computer and use it in GitHub Desktop.
Save brianv0/2146dad93b703a2d86d9bb7264b3225a to your computer and use it in GitHub Desktop.
io/sql.py
# -*- coding: utf-8 -*-
"""
Collection of query wrappers / abstractions to both facilitate data
retrieval and to reduce dependency on DB-specific API.
"""
from __future__ import print_function, division
from builtins import str, bytes, map, zip
#from datetime import datetime, date, time
import warnings
import numpy as np
import sqlalchemy
from sqlalchemy import select
from sqlalchemy import Table, Column, PrimaryKeyConstraint, Numeric
from sqlalchemy.schema import MetaData, CreateTable
from sqlalchemy.types import (SmallInteger, Integer, BigInteger,
Float, Text, Boolean,
DateTime, Date, Time, TIMESTAMP)
from sqlalchemy.types import to_instance, TypeEngine
#import pandas._libs.lib as lib
#from pandas.core.dtypes.missing import isnull
#from pandas.core.dtypes.dtypes import DatetimeTZDtype
#from pandas.core.dtypes.common import (
# is_list_like, is_dict_like,
# is_datetime64tz_dtype)
#from pandas.core.api import DataFrame, Series
#from pandas.core.base import PandasObject
#from pandas.core.tools.datetimes import to_datetime
from contextlib import contextmanager
def is_dict_like(obj):
return hasattr(obj, '__getitem__') and hasattr(obj, 'keys')
def is_list_like(obj):
return hasattr(obj, '__iter__') and not isinstance(obj, (str, bytes))
class SQLAlchemyRequired(ImportError):
pass
class DatabaseError(IOError):
pass
def execute(sql, con, params=None):
"""
Execute the given SQL query using the provided connection object.
Parameters
----------
sql : string
Query to be executed
con : SQLAlchemy connectable(engine/connection) or sqlite3 connection
Using SQLAlchemy makes it possible to use any DB supported by that
library.
If a DBAPI2 object, only sqlite3 is supported.
params : list or tuple, optional, default: None
List of parameters to pass to execute method.
Returns
-------
Results Iterable
"""
sql_io = sql_io_builder(con)
args = _convert_params(sql, params)
return sql_io.execute(*args)
# -----------------------------------------------------------------------------
# -- Read and write to DataFrames
def read_sql_table(table_name, con, schema=None, index_col=None,
coerce_float=True, parse_dates=None, columns=None,
chunksize=None):
"""Read SQL database table into a DataFrame.
Given a table name and an SQLAlchemy connectable, returns a DataFrame.
This function does not support DBAPI connections.
Parameters
----------
table_name : string
Name of SQL table in database
con : SQLAlchemy connectable (or database string URI)
Sqlite DBAPI connection mode not supported
schema : string, default None
Name of SQL schema in database to query (if database flavor
supports this). If None, use default schema (default).
index_col : string or list of strings, optional, default: None
Column(s) to set as index(MultiIndex)
coerce_float : boolean, default True
Attempt to convert values of non-string, non-numeric objects (like
decimal.Decimal) to floating point. Can result in loss of Precision.
parse_dates : list or dict, default: None
- List of column names to parse as dates
- Dict of ``{column_name: format string}`` where format string is
strftime compatible in case of parsing string times or is one of
(D, s, ns, ms, us) in case of parsing integer timestamps
- Dict of ``{column_name: arg dict}``, where the arg dict corresponds
to the keyword arguments of :func:`pandas.to_datetime`
Especially useful with databases without native Datetime support,
such as SQLite
columns : list, default: None
List of column names to select from sql table
chunksize : int, default None
If specified, return an iterator where `chunksize` is the number of
rows to include in each chunk.
Returns
-------
DataFrame
Notes
-----
Any datetime values with time zone information will be converted to UTC
See also
--------
read_sql_query : Read SQL query into a DataFrame.
read_sql
"""
con = _engine_builder(con)
meta = MetaData(con, schema=schema)
try:
meta.reflect(only=[table_name], views=True)
except sqlalchemy.exc.InvalidRequestError:
raise ValueError("Table %s not found" % table_name)
sql_io = SQLDatabase(con, meta=meta)
table = sql_io.read_table(
table_name, index_col=index_col, coerce_float=coerce_float,
parse_dates=parse_dates, columns=columns, chunksize=chunksize)
if table is not None:
return table
else:
raise ValueError("Table %s not found" % table_name, con)
def read_sql_query(sql, con, index_col=None, coerce_float=True, params=None,
parse_dates=None, chunksize=None):
"""Read SQL query into a DataFrame.
Returns a DataFrame corresponding to the result set of the query
string. Optionally provide an `index_col` parameter to use one of the
columns as the index, otherwise default integer index will be used.
Parameters
----------
sql : string SQL query or SQLAlchemy Selectable (select or text object)
to be executed.
con : SQLAlchemy connectable(engine/connection) or database string URI
or sqlite3 DBAPI2 connection
Using SQLAlchemy makes it possible to use any DB supported by that
library.
If a DBAPI2 object, only sqlite3 is supported.
index_col : string or list of strings, optional, default: None
Column(s) to set as index(MultiIndex)
coerce_float : boolean, default True
Attempt to convert values of non-string, non-numeric objects (like
decimal.Decimal) to floating point, useful for SQL result sets
params : list, tuple or dict, optional, default: None
List of parameters to pass to execute method. The syntax used
to pass parameters is database driver dependent. Check your
database driver documentation for which of the five syntax styles,
described in PEP 249's paramstyle, is supported.
Eg. for psycopg2, uses %(name)s so use params={'name' : 'value'}
parse_dates : list or dict, default: None
- List of column names to parse as dates
- Dict of ``{column_name: format string}`` where format string is
strftime compatible in case of parsing string times or is one of
(D, s, ns, ms, us) in case of parsing integer timestamps
- Dict of ``{column_name: arg dict}``, where the arg dict corresponds
to the keyword arguments of :func:`pandas.to_datetime`
Especially useful with databases without native Datetime support,
such as SQLite
chunksize : int, default None
If specified, return an iterator where `chunksize` is the number of
rows to include in each chunk.
Returns
-------
DataFrame
Notes
-----
Any datetime values with time zone information parsed via the `parse_dates`
parameter will be converted to UTC
See also
--------
read_sql_table : Read SQL database table into a DataFrame
read_sql
"""
sql_io = sql_io_builder(con)
return sql_io.read_sql(
sql, index_col=index_col, params=params, coerce_float=coerce_float,
parse_dates=parse_dates, chunksize=chunksize)
def read_sql(sql, con, index_col=None, coerce_float=True, params=None,
parse_dates=None, columns=None, chunksize=None):
"""
Read SQL query or database table into a DataFrame.
Parameters
----------
sql : string SQL query or SQLAlchemy Selectable (select or text object)
to be executed, or database table name.
con : SQLAlchemy connectable(engine/connection) or database string URI
or DBAPI2 connection (fallback mode)
Using SQLAlchemy makes it possible to use any DB supported by that
library.
index_col : string or list of strings, optional, default: None
Column(s) to set as index(MultiIndex)
coerce_float : boolean, default True
Attempt to convert values of non-string, non-numeric objects (like
decimal.Decimal) to floating point, useful for SQL result sets
params : list, tuple or dict, optional, default: None
List of parameters to pass to execute method. The syntax used
to pass parameters is database driver dependent. Check your
database driver documentation for which of the five syntax styles,
described in PEP 249's paramstyle, is supported.
Eg. for psycopg2, uses %(name)s so use params={'name' : 'value'}
parse_dates : list or dict, default: None
- List of column names to parse as dates
- Dict of ``{column_name: format string}`` where format string is
strftime compatible in case of parsing string times or is one of
(D, s, ns, ms, us) in case of parsing integer timestamps
- Dict of ``{column_name: arg dict}``, where the arg dict corresponds
to the keyword arguments of :func:`pandas.to_datetime`
Especially useful with databases without native Datetime support,
such as SQLite
columns : list, default: None
List of column names to select from sql table (only used when reading
a table).
chunksize : int, default None
If specified, return an iterator where `chunksize` is the
number of rows to include in each chunk.
Returns
-------
DataFrame
Notes
-----
This function is a convenience wrapper around ``read_sql_table`` and
``read_sql_query`` (and for backward compatibility) and will delegate
to the specific function depending on the provided input (database
table name or sql query). The delegated function might have more specific
notes about their functionality not listed here.
See also
--------
read_sql_table : Read SQL database table into a DataFrame
read_sql_query : Read SQL query into a DataFrame
"""
sql_io = sql_io_builder(con)
try:
_is_table_name = sql_io.has_table(sql)
except:
_is_table_name = False
if _is_table_name:
sql_io.meta.reflect(only=[sql])
return sql_io.read_table(
sql, index_col=index_col, coerce_float=coerce_float,
parse_dates=parse_dates, columns=columns, chunksize=chunksize)
else:
return sql_io.read_sql(
sql, index_col=index_col, params=params,
coerce_float=coerce_float, parse_dates=parse_dates,
chunksize=chunksize)
def to_sql(frame, name, con, schema=None, if_exists='fail',
index=True, index_label=None, chunksize=None, dtype=None):
"""
Write records stored in a DataFrame to a SQL database.
Parameters
----------
frame : DataFrame
name : string
Name of SQL table
con : SQLAlchemy connectable(engine/connection) or database string URI
orDBAPI2 connection
Using SQLAlchemy makes it possible to use any DB supported by that
library.
If a DBAPI2 object, only sqlite3 is supported.
schema : string, default None
Name of SQL schema in database to write to (if database flavor
supports this). If None, use default schema (default).
if_exists : {'fail', 'replace', 'append'}, default 'fail'
- fail: If table exists, do nothing.
- replace: If table exists, drop it, recreate it, and insert data.
- append: If table exists, insert data. Create if does not exist.
index : boolean, default True
Write DataFrame index as a column
index_label : string or sequence, default None
Column label for index column(s). If None is given (default) and
`index` is True, then the index names are used.
A sequence should be given if the DataFrame uses MultiIndex.
chunksize : int, default None
If not None, then rows will be written in batches of this size at a
time. If None, all rows will be written at once.
dtype : single SQLtype or dict of column name to SQL type, default None
Optional specifying the datatype for columns. The SQL type should
be a SQLAlchemy type, or a string for sqlite3 fallback connection.
If all columns are of the same type, one single value can be used.
"""
if if_exists not in ('fail', 'replace', 'append'):
raise ValueError("'{0}' is not valid for if_exists".format(if_exists))
sql_io = sql_io_builder(con, schema=schema)
if not isinstance(frame, DataFrame):
raise NotImplementedError("'frame' argument should be either a "
"Series or a DataFrame")
sql_io.to_sql(frame, name, if_exists=if_exists, index=index,
index_label=index_label, schema=schema,
chunksize=chunksize, dtype=dtype)
def has_table(table_name, con, schema=None):
"""
Check if DataBase has named table.
Parameters
----------
table_name: string
Name of SQL table
con: SQLAlchemy connectable(engine/connection) or sqlite3 DBAPI2 connection
Using SQLAlchemy makes it possible to use any DB supported by that
library.
schema : string, default None
Name of SQL schema in database to write to (if database flavor supports
this). If None, use default schema (default).
Returns
-------
boolean
"""
sql_io = sql_io_builder(con, schema=schema)
return sql_io.has_table(table_name)
table_exists = has_table
def sql_io_builder(con, schema=None, meta=None):
"""
Convenience function to return a SQLIO object
"""
# When support for DBAPI connections is removed,
# is_cursor should not be necessary.
con = _engine_builder(con)
return SQLDatabase(con, schema=schema, meta=meta)
# -----------------------------------------------------------------------------
# -- Helper functions
def _convert_params(sql, params):
"""convert sql and params args to DBAPI2.0 compliant format"""
args = [sql]
if params is not None:
if hasattr(params, 'keys'): # test if params is a mapping
args += [params]
else:
args += [list(params)]
return args
'''
# TODO: DateTime
# If afw.table supports DateTime (which?),
# modify and use this code
def _handle_date_column(col, date_fmt=None):
if isinstance(date_fmt, dict):
return to_datetime(col, errors='ignore', **date_fmt)
else:
if date_fmt in ['D', 's', 'ms', 'us', 'ns']:
return to_datetime(col, errors='coerce', unit=date_fmt, utc=True)
elif (issubclass(col.dtype.type, np.floating) or
issubclass(col.dtype.type, np.integer)):
# parse dates as timestamp
date_fmt = 's' if date_fmt is None else date_fmt
return to_datetime(col, errors='coerce', unit=date_fmt, utc=True)
elif is_datetime64tz_dtype(col):
# coerce to UTC timezone
# GH11216
return (to_datetime(col, errors='coerce')
.astype('datetime64[ns, UTC]'))
else:
return to_datetime(col, errors='coerce',
format=date_fmt, utc=True)
def _parse_date_columns(data_frame, parse_dates):
"""
Force non-datetime columns to be read as such.
Supports both string formatted and integer timestamp columns
"""
# handle non-list entries for parse_dates gracefully
if parse_dates is True or parse_dates is None or parse_dates is False:
parse_dates = []
if not hasattr(parse_dates, '__iter__'):
parse_dates = [parse_dates]
for col_name in parse_dates:
df_col = data_frame[col_name]
try:
date_fmt = parse_dates[col_name]
except TypeError:
date_fmt = None
data_frame[col_name] = _handle_date_column(df_col, date_fmt=date_fmt)
# we want to coerce datetime64_tz dtypes for now
# we could in theory do a 'nice' conversion from a FixedOffset tz
# GH11216
for col_name, df_col in data_frame.iteritems():
if is_datetime64tz_dtype(df_col):
data_frame[col_name] = _handle_date_column(df_col)
return data_frame
'''
def _wrap_result(data, columns, index_col=None, coerce_float=True,
parse_dates=None):
"""Wrap result set of query in a DataFrame """
frame = DataFrame.from_records(data, columns=columns,
coerce_float=coerce_float)
# TODO: DateTime, see above
# _parse_date_columns(frame, parse_dates)
if index_col is not None:
frame.set_index(index_col, inplace=True)
return frame
def _engine_builder(con):
"""
Returns a SQLAlchemy engine from a URI (if con is a string)
else it just return con without modifying it
"""
if isinstance(con, str):
con = sqlalchemy.create_engine(con)
return con
return con
class SQLTable(object):
"""
For mapping afw.table to SQL tables.
Uses fact that table is reflected by SQLAlchemy to
do better type conversions.
Also holds various flags needed to avoid having to
pass them between functions all the time.
"""
# TODO: support for multiIndex
def __init__(self, name, sql_io_engine, frame=None, index=True,
if_exists='fail', prefix='pandas', index_label=None,
schema=None, keys=None, dtype=None):
self.name = name
self.sql_io = sql_io_engine
self.prefix = prefix
self.frame = frame
self.index = self._index_name(index, index_label)
self.schema = schema
self.if_exists = if_exists
self.keys = keys
self.dtype = dtype
if frame is not None:
# We want to initialize based on a dataframe
self.table = self._create_table_setup()
else:
# no data provided, read-only mode
self.table = self.sql_io.get_table(self.name, self.schema)
if self.table is None:
raise ValueError("Could not init table '%s'" % name)
def exists(self):
return self.sql_io.has_table(self.name, self.schema)
def sql_schema(self):
return str(CreateTable(self.table).compile(self.sql_io.connectable))
def _execute_create(self):
# Inserting table into database, add to MetaData object
self.table = self.table.tometadata(self.sql_io.meta)
self.table.create()
def create(self):
if self.exists():
if self.if_exists == 'fail':
raise ValueError("Table '%s' already exists." % self.name)
elif self.if_exists == 'replace':
self.sql_io.drop_table(self.name, self.schema)
self._execute_create()
elif self.if_exists == 'append':
pass
else:
raise ValueError(
"'{0}' is not valid for if_exists".format(self.if_exists))
else:
self._execute_create()
def insert_statement(self):
return self.table.insert()
def insert_data(self):
if self.index is not None:
temp = self.frame.copy()
temp.index.names = self.index
try:
temp.reset_index(inplace=True)
except ValueError as err:
raise ValueError(
"duplicate name in index/columns: {0}".format(err))
else:
temp = self.frame
column_names = list(map(str, temp.columns))
ncols = len(column_names)
data_list = [None] * ncols
blocks = temp._data.blocks
for i in range(len(blocks)):
b = blocks[i]
if b.is_datetime:
# convert to microsecond resolution so this yields
# datetime.datetime
d = b.values.astype('M8[us]').astype(object)
else:
d = np.array(b.get_values(), dtype=object)
# replace NaN with None
if b._can_hold_na:
mask = isnull(d)
d[mask] = None
for col_loc, col in zip(b.mgr_locs, d):
data_list[col_loc] = col
return column_names, data_list
def _execute_insert(self, conn, keys, data_iter):
data = [dict((k, v) for k, v in zip(keys, row)) for row in data_iter]
conn.execute(self.insert_statement(), data)
def insert(self, chunksize=None):
keys, data_list = self.insert_data()
nrows = len(self.frame)
if nrows == 0:
return
if chunksize is None:
chunksize = nrows
elif chunksize == 0:
raise ValueError('chunksize argument should be non-zero')
chunks = int(nrows / chunksize) + 1
with self.sql_io.run_transaction() as conn:
for i in range(chunks):
start_i = i * chunksize
end_i = min((i + 1) * chunksize, nrows)
if start_i >= end_i:
break
chunk_iter = zip(*[arr[start_i:end_i] for arr in data_list])
self._execute_insert(conn, keys, chunk_iter)
def _query_iterator(self, result, chunksize, columns, coerce_float=True,
parse_dates=None):
"""Return generator through chunked result set"""
while True:
data = result.fetchmany(chunksize)
if not data:
break
else:
self.frame = DataFrame.from_records(
data, columns=columns, coerce_float=coerce_float)
self._harmonize_columns(parse_dates=parse_dates)
if self.index is not None:
self.frame.set_index(self.index, inplace=True)
yield self.frame
def read(self, coerce_float=True, parse_dates=None, columns=None,
chunksize=None):
if columns is not None and len(columns) > 0:
cols = [self.table.c[n] for n in columns]
if self.index is not None:
[cols.insert(0, self.table.c[idx]) for idx in self.index[::-1]]
sql_select = select(cols)
else:
sql_select = self.table.select()
result = self.sql_io.execute(sql_select)
column_names = result.keys()
if chunksize is not None:
return self._query_iterator(result, chunksize, column_names,
coerce_float=coerce_float,
parse_dates=parse_dates)
else:
data = result.fetchall()
self.frame = DataFrame.from_records(
data, columns=column_names, coerce_float=coerce_float)
self._harmonize_columns(parse_dates=parse_dates)
if self.index is not None:
self.frame.set_index(self.index, inplace=True)
return self.frame
def _index_name(self, index, index_label):
# for writing: index=True to include index in sql table
if index is True:
nlevels = self.frame.index.nlevels
# if index_label is specified, set this as index name(s)
if index_label is not None:
if not isinstance(index_label, list):
index_label = [index_label]
if len(index_label) != nlevels:
raise ValueError(
"Length of 'index_label' should match number of "
"levels, which is {0}".format(nlevels))
else:
return index_label
# return the used column labels for the index columns
if (nlevels == 1 and 'index' not in self.frame.columns and
self.frame.index.name is None):
return ['index']
else:
return [l if l is not None else "level_{0}".format(i)
for i, l in enumerate(self.frame.index.names)]
# for reading: index=(list of) string to specify column to set as index
elif isinstance(index, str):
return [index]
elif isinstance(index, list):
return index
else:
return None
def _get_column_names_and_types(self, dtype_mapper):
column_names_and_types = []
if self.index is not None:
for i, idx_label in enumerate(self.index):
idx_type = dtype_mapper(
self.frame.index._get_level_values(i))
column_names_and_types.append((str(idx_label),
idx_type, True))
column_names_and_types += [
(str(self.frame.columns[i]),
dtype_mapper(self.frame.iloc[:, i]),
False)
for i in range(len(self.frame.columns))
]
return column_names_and_types
def _create_table_setup(self):
column_names_and_types = \
self._get_column_names_and_types(self._sqlalchemy_type)
columns = [Column(name, typ, index=is_index)
for name, typ, is_index in column_names_and_types]
if self.keys is not None:
if not is_list_like(self.keys):
keys = [self.keys]
else:
keys = self.keys
pkc = PrimaryKeyConstraint(*keys, name=self.name + '_pk')
columns.append(pkc)
schema = self.schema or self.sql_io.meta.schema
# At this point, attach to new metadata, only attach to self.meta
# once table is created.
meta = MetaData(self.sql_io, schema=schema)
return Table(self.name, meta, *columns, schema=schema)
def _harmonize_columns(self, parse_dates=None):
"""
Make afw.table's column types align with the SQL table
column types.
Need to work around limited NA value support. Floats are always
fine, ints must always be floats if there are Null values.
Booleans are hard because converting bool column with None replaces
all Nones with false. Therefore only convert bool if there are no
NA values.
Datetimes should already be converted to np.datetime64 if supported,
but here we also force conversion if required
"""
# handle non-list entries for parse_dates gracefully
if parse_dates is True or parse_dates is None or parse_dates is False:
parse_dates = []
if not hasattr(parse_dates, '__iter__'):
parse_dates = [parse_dates]
for sql_col in self.table.columns:
col_name = sql_col.name
try:
df_col = self.frame[col_name]
# the type the dataframe column should have
col_type = self._get_table_type(sql_col.type)
'''
# TODO: DateTime, see above
if (col_type is datetime or col_type is date or
col_type is DatetimeTZDtype):
self.frame[col_name] = _handle_date_column(df_col)
elif col_type is float:
'''
if col_type is float:
# floats support NA, can always convert!
self.frame[col_name] = df_col.astype(col_type, copy=False)
elif len(df_col) == df_col.count():
# No NA values, can convert ints and bools
if col_type is np.dtype('int64') or col_type is bool:
self.frame[col_name] = df_col.astype(
col_type, copy=False)
'''
# TODO: DateTime, see above
if col_name in parse_dates:
try:
fmt = parse_dates[col_name]
except TypeError:
fmt = None
self.frame[col_name] = _handle_date_column(
df_col, date_fmt=fmt)
'''
except KeyError:
pass # this column not in results
def _sqlalchemy_type(self, col):
dtype = self.dtype or {}
if col.name in dtype:
return self.dtype[col.name]
col_type = col.getTypeString()
if col_type == "U":
return SmallInteger
elif col_type == "I":
return Integer
elif col_type == "L":
return BigInteger
elif col_type == "F":
return Float(precision=23)
elif col_type == "D":
return Float(precision=53)
elif col_type == "Flag":
return Boolean
elif col_type == "Angle":
return Float(precision=53)
elif col_type == "String":
return String(length=col.getSize())
elif col_type == "ArrayU":
return self._get_array_type("H", col)
elif col_type == "ArrayI":
return self._get_array_type("i", col)
elif col_type == "ArrayF":
return self._get_array_type("f", col)
elif col_type == "ArrayD":
return self._get_array_type("d", col)
elif col_type == 'complex':
raise ValueError('Complex datatypes not supported')
return Text
def _get_array_type(self, format_char, field):
sz = field.getSize()
if sz == 0:
return "BLOB NOT NULL"
sz *= struct.calcsize("<" + format_char)
if sz > 65535:
raise RuntimeError("Array field is too large for ingestion")
return "BINARY({}) NOT NULL".format(sz)
class SQLIO(object):
"""
Subclasses Should define read_sql and to_sql
"""
def read_sql(self, *args, **kwargs):
raise ValueError("SQLIO must be created with an SQLAlchemy "
"connectable or sqlite connection")
def to_sql(self, *args, **kwargs):
raise ValueError("SQLIO must be created with an SQLAlchemy "
"connectable or sqlite connection")
class SQLDatabase(SQLIO):
"""
This class enables convertion between DataFrame and SQL databases
using SQLAlchemy to handle DataBase abstraction
Parameters
----------
engine : SQLAlchemy connectable
Connectable to connect with the database. Using SQLAlchemy makes it
possible to use any DB supported by that library.
schema : string, default None
Name of SQL schema in database to write to (if database flavor
supports this). If None, use default schema (default).
meta : SQLAlchemy MetaData object, default None
If provided, this MetaData object is used instead of a newly
created. This allows to specify database flavor specific
arguments in the MetaData object.
"""
def __init__(self, engine, schema=None, meta=None):
self.connectable = engine
if not meta:
meta = MetaData(self.connectable, schema=schema)
self.meta = meta
@contextmanager
def run_transaction(self):
with self.connectable.begin() as tx:
if hasattr(tx, 'execute'):
yield tx
else:
yield self.connectable
def execute(self, *args, **kwargs):
"""Simple passthrough to SQLAlchemy connectable"""
return self.connectable.execute(*args, **kwargs)
def read_table(self, table_name, index_col=None, coerce_float=True,
parse_dates=None, columns=None, schema=None,
chunksize=None):
"""Read SQL database table into an afw.table.
Parameters
----------
table_name : string
Name of SQL table in database
index_col : string, optional, default: None
Column to set as index
coerce_float : boolean, default True
Attempt to convert values of non-string, non-numeric objects
(like decimal.Decimal) to floating point. This can result in
loss of precision.
parse_dates : list or dict, default: None
- List of column names to parse as dates
- Dict of ``{column_name: format string}`` where format string is
strftime compatible in case of parsing string times or is one of
(D, s, ns, ms, us) in case of parsing integer timestamps
- Dict of ``{column_name: arg}``, where the arg corresponds
to the keyword arguments of :func:`pandas.to_datetime`.
Especially useful with databases without native Datetime support,
such as SQLite
columns : list, default: None
List of column names to select from sql table
schema : string, default None
Name of SQL schema in database to query (if database flavor
supports this). If specified, this overwrites the default
schema of the SQLDatabase object.
chunksize : int, default None
If specified, return an iterator where `chunksize` is the number
of rows to include in each chunk.
Returns
-------
afw.table
See also
--------
pandas.read_sql_table
SQLDatabase.read_sql
"""
table = SQLTable(table_name, self, index=index_col, schema=schema)
return table.read(coerce_float=coerce_float,
parse_dates=parse_dates, columns=columns,
chunksize=chunksize)
@staticmethod
def _query_iterator(result, chunksize, columns, index_col=None,
coerce_float=True, parse_dates=None):
"""Return generator through chunked result set"""
while True:
data = result.fetchmany(chunksize)
if not data:
break
else:
yield _wrap_result(data, columns, index_col=index_col,
coerce_float=coerce_float,
parse_dates=parse_dates)
def read_sql(self, sql, index_col=None, coerce_float=True,
parse_dates=None, params=None, chunksize=None):
"""Read SQL query into a afw.table.
Parameters
----------
sql : string
SQL query to be executed
index_col : string, optional, default: None
Column name to use as index for the returned afw.table object.
coerce_float : boolean, default True
Attempt to convert values of non-string, non-numeric objects (like
decimal.Decimal) to floating point, useful for SQL result sets
params : list, tuple or dict, optional, default: None
List of parameters to pass to execute method. The syntax used
to pass parameters is database driver dependent. Check your
database driver documentation for which of the five syntax styles,
described in PEP 249's paramstyle, is supported.
Eg. for psycopg2, uses %(name)s so use params={'name' : 'value'}
parse_dates : list or dict, default: None
- List of column names to parse as dates
- Dict of ``{column_name: format string}`` where format string is
strftime compatible in case of parsing string times or is one of
(D, s, ns, ms, us) in case of parsing integer timestamps
- Dict of ``{column_name: arg dict}``, where the arg dict
corresponds to the keyword arguments of
:func:`pandas.to_datetime` Especially useful with databases
without native Datetime support, such as SQLite
chunksize : int, default None
If specified, return an iterator where `chunksize` is the number
of rows to include in each chunk.
Returns
-------
afw.table
See also
--------
read_sql_table : Read SQL database table into a afw.table
read_sql
"""
args = _convert_params(sql, params)
result = self.execute(*args)
columns = result.keys()
if chunksize is not None:
return self._query_iterator(result, chunksize, columns,
index_col=index_col,
coerce_float=coerce_float,
parse_dates=parse_dates)
else:
data = result.fetchall()
frame = _wrap_result(data, columns, index_col=index_col,
coerce_float=coerce_float,
parse_dates=parse_dates)
return frame
def to_sql(self, table, name, if_exists='fail', index=True,
index_label=None, schema=None, chunksize=None, dtype=None):
"""
Write records stored in a DataFrame to a SQL database.
Parameters
----------
table : afw.table
name : string
Name of SQL table
if_exists : {'fail', 'replace', 'append'}, default 'fail'
- fail: If table exists, do nothing.
- replace: If table exists, drop it, recreate it, and insert data.
- append: If table exists, insert data. Create if does not exist.
index : boolean, default True
Write afw.table index as a column
index_label : string or sequence, default None
Column label for index column(s). If None is given (default) and
`index` is True, then the index names are used.
A sequence should be given if the DataFrame uses MultiIndex.
schema : string, default None
Name of SQL schema in database to write to (if database flavor
supports this). If specified, this overwrites the default
schema of the SQLDatabase object.
chunksize : int, default None
If not None, then rows will be written in batches of this size at a
time. If None, all rows will be written at once.
dtype : single type or dict of column name to SQL type, default None
Optional specifying the datatype for columns. The SQL type should
be a SQLAlchemy type. If all columns are of the same type, one
single value can be used.
"""
if dtype and not is_dict_like(dtype):
dtype = {col_name: dtype for col_name in table}
if dtype is not None:
for col, my_type in dtype.items():
if not isinstance(to_instance(my_type), TypeEngine):
raise ValueError('The type of %s is not a SQLAlchemy '
'type ' % col)
table = SQLTable(name, self, frame=table, index=index,
if_exists=if_exists, index_label=index_label,
schema=schema, dtype=dtype)
table.create()
table.insert(chunksize)
if (not name.isdigit() and not name.islower()):
# check for potentially case sensitivity issues (GH7815)
# Only check when name is not a number and name is not lower case
engine = self.connectable.engine
with self.connectable.connect() as conn:
table_names = engine.table_names(
schema=schema or self.meta.schema,
connection=conn,
)
if name not in table_names:
msg = (
"The provided table name '{0}' is not found exactly as "
"such in the database after writing the table, possibly "
"due to case sensitivity issues. Consider using lower "
"case table names."
).format(name)
warnings.warn(msg, UserWarning)
@property
def tables(self):
return self.meta.tables
def has_table(self, name, schema=None):
return self.connectable.run_callable(
self.connectable.dialect.has_table,
name,
schema or self.meta.schema,
)
def get_table(self, table_name, schema=None):
schema = schema or self.meta.schema
if schema:
tbl = self.meta.tables.get('.'.join([schema, table_name]))
else:
tbl = self.meta.tables.get(table_name)
# Avoid casting double-precision floats into decimals
for column in tbl.columns:
if isinstance(column.type, Numeric):
column.type.asdecimal = False
return tbl
def drop_table(self, table_name, schema=None):
schema = schema or self.meta.schema
if self.has_table(table_name, schema):
self.meta.reflect(only=[table_name], schema=schema)
self.get_table(table_name, schema).drop()
self.meta.clear()
def _create_sql_schema(self, frame, table_name, keys=None, dtype=None):
table = SQLTable(table_name, self, frame=frame, index=False, keys=keys,
dtype=dtype)
return str(table.sql_schema())
def get_schema(frame, name, keys=None, con=None, dtype=None):
"""
Get the SQL db table schema for the given frame.
Parameters
----------
frame : DataFrame
name : string
name of SQL table
keys : string or sequence, default: None
columns to use a primary key
con: an open SQL database connection object or a SQLAlchemy connectable
Using SQLAlchemy makes it possible to use any DB supported by that
library, default: None
dtype : dict of column name to SQL type, default None
Optional specifying the datatype for columns. The SQL type should
be a SQLAlchemy type.
"""
sql_io = sql_io_builder(con=con)
return sql_io._create_sql_schema(frame, name, keys=keys, dtype=dtype)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment