Skip to content

Instantly share code, notes, and snippets.

@brianv0
Last active July 26, 2018 18:40
Show Gist options
  • Save brianv0/e16ee2b424b177b09553fb21a6813bb8 to your computer and use it in GitHub Desktop.
Save brianv0/e16ee2b424b177b09553fb21a6813bb8 to your computer and use it in GitHub Desktop.
foo

Test Cases Summary

Jira Id Test Name
LVV-T17 AG-00-00: Installation of the Alert Generation science payload.
LVV-T18 AG-00-05: Alert Generation Produces Required Data Products
LVV-T19 AG-00-10: Scientific Verification of Processed Visit Images
LVV-T20 AG-00-15: Scientific Verification of Difference Images
LVV-T21 AG-00-20: Scientific Verification of DIASource Catalog
LVV-T22 AG-00-25: Scientific Verification of DIAObject Catalog
LVV-T216 Installation of the Alert Distribution payloads.
LVV-T217 Full Stream Alert Distribution
LVV-T218 Simple Filtering of the LSST Alert Stream

Test Cases

LVV-T17 - AG-00-00: Installation of the Alert Generation science payload.

Version Status Priority Verification Type Critical Event Owner
1 Approved Normal Test False Eric Bellm

Requirements

  • LVV-139 - DMS-REQ-0308-V-01: Software Architecture to Enable Community Re-Use

Predecessors

None.

Required Software

- Environmental needs

Software All prerequisite packages listed at https://pipelines.lsst.io/install/ prereqs/centos.html must be available on the test system and on the LSST-VC compute node.

Precondition

- Input specification

No input data is required for this test case.

Precondition

- Output specification

The Alert Generation science payload will be made available on a shared filesystem accessible from LSST-VC compute notes.

Test Script

Step Description
1 Description
Release 16.0 of the LSST Science Pipelines will be installed into the GPFS filesystem accessible at /software on lsst-dev01 following the instructions at https://pipelines.lsst.io/install/newinstall.html .
2 Description
The lsst_distrib top level package will be enabled:

       source /software/lsstsw/stack3/loadLSST.bash
       setup lsst_distrib
3 Description
The “LSST Stack Demo” package will be downloaded onto the test system from https://github.com/lsst/lsst_dm_stack_demo/releases/tag/16.0 and uncompressed.
4 Description
The demo package will be executed by following the instructions in its “README“ file. The string “Ok.“ should be returned. Specifically, we execute:
       setup obs_sdss
       ./bin/demo.sh
       python bin/compare expected/Linux64/detected-sources.txt
5 Description
A shell on an LSST-VC compute node will now be obtained by executing:
     $ srun -I --pty bash
6 Description
The demo package will be executed on the compute node and the same result obtained.
7 Description
The Alert Production datasets and packages are not yet part of lsst_distrib and so must be installed separately. They will be installed as follows on the GPFS filesystem:

    setup git_lfs
    git clone https://github.com/lsst/ap_verify_hits2015.git

    export AP_VERIFY_HITS2015_DIR=$PWD/ap_verify_hits2015 cd $AP_VERIFY_HITS2015_DIR
    setup -r .
    cd-
   
    setup obs_decam
    git clone https://github.com/lsst-dm/ap_association
    cd ap_association
    setup -k -r .
    scons
    cd-
   
    git clone https://github.com/lsst-dm/ap_pipe
    cd ap_pipe
    setup -k -r .
    scons
    cd-
   
    git clone https://github.com/lsst-dm/ap_verify
    cd ap_verify
    setup -k -r .
    scons
    cd-

and any errors or failures reported.

LVV-T18 - AG-00-05: Alert Generation Produces Required Data Products

Version Status Priority Verification Type Critical Event Owner
1 Approved Normal Test False Eric Bellm

Requirements

  • LVV-29 - DMS-REQ-0069-V-01: Processed Visit Images
  • LVV-7 - DMS-REQ-0010-V-01: Difference Exposures
  • LVV-100 - DMS-REQ-0269-V-01: DIASource Catalog
  • LVV-102 - DMS-REQ-0271-V-01: DIAObject Catalog

Predecessors

LVV-T-17 (AG-00-00)

Required Software

- Environmental needs - Software

Release 16.0 of the DM Software Stack will be pre-installed (following the procedure described in AG-00-00).

Precondition

- Input specification

A complete processing of the DECam “HiTS” dataset, as defined at https://dmtn-039.lsst.io/ and https://github.com/lsst/ap\_verify\_hits2015, through the Alert Generation science payload.
This dataset shall be made available in a standard LSST data repository, accessible via the “Data Butler”.
It is not required that all combinations of visit and CCD have been processed successfully: a number of failures are expected. However, documentation to describe processing failures should be provided.

Precondition

- Output specification

None.

Test Script

Step Description
1 Description
The DM Stack and Alert Processing packaged shall be initialized as described in LVT-T17 (AG-00-00).
2 Description
The alert generation processing will be executed using the verification cluster:

```bash
python ap_verify/bin/prepare_demo_slurm_files.py
# At present we must run a single ccd+visit to handle ingestion before
# parallel processing can begin
./ap_verify/bin/exec_demo_run_1ccd.sh 410915 25
ln -s ap_verify/bin/demo_run.sl
ln -s ap_verify/bin/demo_cmds.conf
sbatch demo_run.sl
```

and any errors or failures reported.
3 Description
A “Data Butler” will be initialized to access the repository.
4 Description
For each of the expected data products types (listed in §4.2.2) and each of the expected units (PVIs, catalogs, etc.), the data product will be retrieved from the Butler and verified to be non-empty.
5 Description
DIAObjects are currently only stored in a database, without shims to the Butler, so the existence of the database table and its non-empty contents will be verified by directly accessing it using sqlite3 and executing appropriate SQL queries.

LVV-T19 - AG-00-10: Scientific Verification of Processed Visit Images

Version Status Priority Verification Type Critical Event Owner
1 Approved Normal Test False Eric Bellm

Requirements

  • LVV-29 - DMS-REQ-0069-V-01: Processed Visit Images
  • LVV-158 - DMS-REQ-0327-V-01: Background Model Calculation
  • LVV-12 - DMS-REQ-0029-V-01: Generate Photometric Zeropoint for Visit Image
  • LVV-30 - DMS-REQ-0070-V-01: Generate PSF for Visit Images
  • LVV-13 - DMS-REQ-0030-V-01: Generate WCS for Visit Images
  • LVV-31 - DMS-REQ-0072-V-01: Processed Visit Image Content

Predecessors

LVT-T17 (AG-00-00)
LVT-T18 (AG-00-05)

Required Software

- Environmental needs - Software

Release 14.0 of the DM Software Stack will be pre-installed (following the procedure described in AG-00-00).

Precondition

Input specification

A complete processing of the DECam “HiTS” dataset, as defined at https://dmtn-039.lsst.io/ and https://github.com/lsst/ap\_verify\_hits2015, through the Alert Generation science payload.
This dataset shall be made available in a standard LSST data repository, accessible via the “Data Butler”.
It is not required that all combinations of visit and CCD have been processed successfully: a number of failures are expected. However, documentation to describe processing failures should be provided.

Precondition

- Output specification

None.

Test Script

Step Description
1 Description
The DM Stack shall be initialized using the loadLSST script (as described in LVV-T17 - AG-00-00).
2 Description
A “Data Butler” will be initialized to access the repository.
3 Description
For each processed CCD, the PVI will be retrieved from the Butler, and the existence of all components described in §4.3.2 will be verified.
4 Description
Five sensors will be chosen at random from each of two visits and inspected by eye for unmasked artifacts.

LVV-T20 - AG-00-15: Scientific Verification of Difference Images

Version Status Priority Verification Type Critical Event Owner
1 Approved Normal Test False Eric Bellm

Requirements

  • LVV-7 - DMS-REQ-0010-V-01: Difference Exposures
  • LVV-32 - DMS-REQ-0074-V-01: Difference Exposure Attributes

Predecessors

LVV-T17 (AG-00-00)
LVV-T18 (AG-00-05)

Required Software

- Environmental needs - Software

Release 14.0 of the DM Software Stack will be pre-installed (following the procedure described in AG-00-00).

Precondition

- Input specification

A complete processing of the DECam “HiTS” dataset, as defined at https://dmtn-039.lsst. io/ and https://github.com/lsst/ap\_verify\_hits2015, through the Alert Generation science payload.
This dataset shall be made available in a standard LSST data repository, accessible via the “Data Butler”.
It is not required that all combinations of visit and CCD have been processed successfully: a number of failures are expected. However, documentation to describe processing failures should be provided.

Precondition

- Output specification

None.

Test Script

Step Description
1 Description
The DM Stack shall be initialized using the loadLSST script (as described in LVV-T-17 AG-00-00).
2 Description
A “Data Butler” will be initialized to access the repository.
3 Description
For each processed CCD, the difference image will be retrieved from the Butler, and the existence of all components described in §4.4.2 will be verified.
4 Description
Five sensors will be chosen at random from each of two visits and the masks of the input and difference images compared by eye.

LVV-T21 - AG-00-20: Scientific Verification of DIASource Catalog

Version Status Priority Verification Type Critical Event Owner
1 Approved Normal Test False Eric Bellm

Requirements

  • LVV-100 - DMS-REQ-0269-V-01: DIASource Catalog
  • LVV-101 - DMS-REQ-0270-V-01: Faint DIASource Measurements
  • LVV-178 - DMS-REQ-0347-V-01: Measurements in catalogs
  • LVV-162 - DMS-REQ-0331-V-01: Computing Derived Quantities

Predecessors

LVT-T17 (AG-00-00)
LVT-T18 (AG-00-05)

Required Software

- Environmental needs - Software

Release 14.0 of the DM Software Stack will be pre-installed (following the procedure described in AG-00-00).

Precondition

- Input specification

A complete processing of the DECam “HiTS” dataset, as defined at https://dmtn-039.lsst. io/ and https://github.com/lsst/ap\_verify\_hits2015, through the Alert Generation science payload.
This dataset shall be made available in a standard LSST data repository, accessible via the “Data Butler”.
It is not required that all combinations of visit and CCD have been processed successfully: a number of failures are expected. However, documentation to describe processing failures should be provided.

Precondition

- Output specification

None.

Test Script

Step Description
1 Description
The DM Stack shall be initialized using the loadLSST script (as described in LVV-T17 - AG-00-00).
2 Description
A “Data Butler” will be initialized to access the repository.
3 Description
DIASource records will be accessed by querying the Butler, then examined interactively at a Python prompt.

LVV-T22 - AG-00-25: Scientific Verification of DIAObject Catalog

Version Status Priority Verification Type Critical Event Owner
1 Approved Normal Test False Eric Bellm

Requirements

  • LVV-116 - DMS-REQ-0285-V-01: Level 1 Source Association
  • LVV-102 - DMS-REQ-0271-V-01: DIAObject Catalog
  • LVV-103 - DMS-REQ-0272-V-01: DIAObject Attributes
  • LVV-178 - DMS-REQ-0347-V-01: Measurements in catalogs
  • LVV-162 - DMS-REQ-0331-V-01: Computing Derived Quantities

Predecessors

LVT-T17 (AG-00-00)
LVT-T18 (AG-00-05)

Required Software

Environmental needs - Software

Release 14.0 of the DM Software Stack will be pre-installed (following the procedure described in AG-00-00).

Precondition

Input specification

A complete processing of the DECam “HiTS” dataset, as defined at https://dmtn-039.lsst. io/ and https://github.com/lsst/ap\_verify\_hits2015, through the Alert Generation science payload.
This dataset shall be made available in a standard LSST data repository, accessible via the “Data Butler”.
It is not required that all combinations of visit and CCD have been processed successfully: a number of failures are expected. However, documentation to describe processing failures should be provided.

Precondition

Output specification

None.

Test Script

Step Description
1 Description
The DM Stack shall be initialized using the loadLSST script (as described in LVV-T17 - AG-00-00).
2 Description
sqlite3 or Python’s sqlalchemy module will be used to access the Level 1 database.

LVV-T216 - Installation of the Alert Distribution payloads.

Version Status Priority Verification Type Critical Event Owner
1 Draft Normal Test False Eric Bellm

Requirements

  • LVV-139 - DMS-REQ-0308-V-01: Software Architecture to Enable Community Re-Use

Test Script

Step Description
1 Description
Download Kafka Docker image from https://github.com/lsst-dm/alert_stream.
Expected Result
Runs without error Download Kafka Docker image from https://github.com/lsst-dm/alert_stream.
2 Description
Change to the alert_stream directory and build the docker image.
docker build -t "lsst-kub001:5000/alert_stream" .

Expected Result
Runs without error Change to the alert_stream directory and build the docker image.
docker build -t "lsst-kub001:5000/alert_stream" .
3 Description
Register it with Kubernetes

docker push lsst-kub001:5000/alert_stream
Expected Result
Runs without error Register it with Kubernetes

docker push lsst-kub001:5000/alert_stream
4 Description
From the alert_stream/kubernetes directory, start Kafka and Zookeeper:

kubectl create -f zookeeper-service.yaml
kubectl create -f zookeeper-deployment.yaml
kubectl create -f kafka-deployment.yaml
kubectl create -f kafka-service.yaml

(use kubectl get pods/services between each command to check status; wait until each is "Running" before starting the next command)


Expected Result
Runs without error From the alert_stream/kubernetes directory, start Kafka and Zookeeper:

kubectl create -f zookeeper-service.yaml
kubectl create -f zookeeper-deployment.yaml
kubectl create -f kafka-deployment.yaml
kubectl create -f kafka-service.yaml

(use kubectl get pods/services between each command to check status; wait until each is "Running" before starting the next command)

5 Description
Confirm Kafka and Zookeeper are listed when running

kubectl get pods

and

kubectl get services
Expected Result
Output should be similar to:

kubectl get pods
NAME                        READY     STATUS    RESTARTS   AGE
kafka-768ddf5564-xwgvh      1/1       Running   0          31s
zookeeper-f798cc548-mgkpn   1/1       Running   0          1m

kubectl get services
NAME        TYPE        CLUSTER-IP      EXTERNAL-IP   PORT(S)     AGE
kafka       ClusterIP   10.105.19.124   <none>        9092/TCP    6s
zookeeper   ClusterIP   10.97.110.124   <none>        32181/TCP   2m Confirm Kafka and Zookeeper are listed when running

kubectl get pods

and

kubectl get services

LVV-T217 - Full Stream Alert Distribution

Version Status Priority Verification Type Critical Event Owner
1 Draft Normal Test False Eric Bellm

Requirements

  • LVV-3 - DMS-REQ-0002-V-01: Transient Alert Distribution

Predecessors

LVV-T216

Required Software

The Kafka cluster and Zookeeper shall be instantiated according to the procedure described in LVV-T216.

Precondition

Input data: A sample of Avro-formatted alert packets.

Precondition

Multiple Kafka consumers will run and write log files to disk.
The logs will include printing every Nth alert to to the log as well as a log summarizing the queue offset.

Test Script

Step Description
1 Description
Download Kafka Docker image from https://github.com/lsst-dm/alert_stream.
2 Description
Change to the alert_stream directory and build the docker image.
docker build -t "lsst-kub001:5000/alert_stream" .
3 Description
Register it with Kubernetes

docker push lsst-kub001:5000/alert_stream
4 Description
From the alert_stream/kubernetes directory, start Kafka and Zookeeper:

kubectl create -f zookeeper-service.yaml
kubectl create -f zookeeper-deployment.yaml
kubectl create -f kafka-deployment.yaml
kubectl create -f kafka-service.yaml

(use kubectl get pods/services between each command to check status; wait until each is "Running" before starting the next command)

5 Description
Confirm Kafka and Zookeeper are listed when running

kubectl get pods

and

kubectl get services
6 Description
Start a consumer that monitors the full stream and logs a deserialized version of every Nth packet:
kubectl create -f consumerall-deployment.yaml


Expected Result
Runs without error Start a consumer that monitors the full stream and logs a deserialized version of every Nth packet:
kubectl create -f consumerall-deployment.yaml

7 Description
Start a producer that reads alert packets from disk and loads them into the Kafka queue:
kubectl create -f sender-deployment.yaml

Expected Result
Runs without error
Start a producer that reads alert packets from disk and loads them into the Kafka queue:
kubectl create -f sender-deployment.yaml
8 Description
Determine the name of the alert sender pod with

kubectl get pods

Examine output log files.

kubectl logs <pod name>

Verify that alerts are being sent within 40 seconds by subtracting the timing measurements.
Expected Result
Similar to

kubectl logs sender-7d6f98586f-nhwfj
visit: 1570.     time: 1530588618.0313473
visits finished: 1      time: 1530588653.5614944
visit: 1571.     time: 1530588657.0087624
visits finished: 2      time: 1530588692.506188
visit: 1572.     time: 1530588696.0051727
visits finished: 3      time: 1530588731.5900314


Determine the name of the alert sender pod with

kubectl get pods

Examine output log files.

kubectl logs <pod name>

Verify that alerts are being sent within 40 seconds by subtracting the timing measurements.
9 Description
Determine the name of the consumer pod with

kubectl get pods

Examine output log files.

kubectl logs <pod name>

The packet log should show deserialized alert packets with contents matching the input packets.


Expected Result
Similar to {'alertId': 12132024420, 'l1dbId': 71776805594116, 'diaSource': {'diaSourceId':
73499448928374785, 'ccdVisitId': 2020011570, 'diaObjectId': 71776805594116, 'ssO
bjectId': None, 'parentDiaSourceId': None, 'midPointTai': 59595.37041, 'filterNa
me': 'y', 'ra': 172.24912810036074, 'decl': -80.64214929176521, 'ra_decl_Cov': {
'raSigma': 0.0003428002819418907, 'declSigma': 0.00027273103478364646, 'ra_decl_
Cov': 0.000628734880592674}, 'x': 2979.08837890625, 'y': 3843.328857421875, 'x_y
_Cov': {'xSigma': 0.6135467886924744, 'ySigma': 0.77132648229599, 'x_y_Cov': 0.0
007463791407644749}, 'apFlux': None, 'apFluxErr': None, 'snr': 0.366516500711441
04, 'psFlux': 7.698232025177276e-07, 'psRa': None, 'psDecl': None, 'ps_Cov': Non
e, 'psLnL': None, 'psChi2': None, 'psNdata': None, 'trailFlux': None, 'trailRa':
etc. Determine the name of the consumer pod with

kubectl get pods

Examine output log files.

kubectl logs <pod name>

The packet log should show deserialized alert packets with contents matching the input packets.

LVV-T218 - Simple Filtering of the LSST Alert Stream

Version Status Priority Verification Type Critical Event Owner
1 Draft Normal Test False Eric Bellm

Requirements

  • LVV-173 - DMS-REQ-0342-V-01: Alert Filtering Service
  • LVV-179 - DMS-REQ-0348-V-01: Pre-defined alert filters
  • LVV-174 - DMS-REQ-0343-V-01: Performance Requirements for LSST Alert Filtering Service

Predecessors

LVV-T216​​​
LVV-T217​​​

Required Software

The Kafka cluster and Zookeeper shall be instantiated according to the procedure described in LVV-T216.

Precondition

Input data: A sample of Avro-formatted alert packets derived from LSST simulations corresponding to one night of simulated LSST observing.

Test Script

Step Description
1 Description
Download Kafka Docker image from https://github.com/lsst-dm/alert_stream.
2 Description
Change to the alert_stream directory and build the docker image.
docker build -t "lsst-kub001:5000/alert_stream" .
3 Description
Register it with Kubernetes

docker push lsst-kub001:5000/alert_stream
4 Description
From the alert_stream/kubernetes directory, start Kafka and Zookeeper:

kubectl create -f zookeeper-service.yaml
kubectl create -f zookeeper-deployment.yaml
kubectl create -f kafka-deployment.yaml
kubectl create -f kafka-service.yaml

(use kubectl get pods/services between each command to check status; wait until each is "Running" before starting the next command)

5 Description
Confirm Kafka and Zookeeper are listed when running

kubectl get pods

and

kubectl get services
6 Description

Start 100 consumers that consume the filtered streams and logs a deserialized version of every Nth packet:

kubectl create -f consumer1-deployment.yaml
kubectl create -f consumer2-deployment.yaml
kubectl create -f consumer3-deployment.yaml
kubectl create -f consumer4-deployment.yaml
kubectl create -f consumer5-deployment.yaml
kubectl create -f consumer6-deployment.yaml
kubectl create -f consumer7-deployment.yaml
kubectl create -f consumer8-deployment.yaml
kubectl create -f consumer9-deployment.yaml
kubectl create -f consumer10-deployment.yaml


Expected Result
Runs without error
Start 100 consumers that consume the filtered streams and logs a deserialized version of every Nth packet:

kubectl create -f consumer1-deployment.yaml
kubectl create -f consumer2-deployment.yaml
kubectl create -f consumer3-deployment.yaml
kubectl create -f consumer4-deployment.yaml
kubectl create -f consumer5-deployment.yaml
kubectl create -f consumer6-deployment.yaml
kubectl create -f consumer7-deployment.yaml
kubectl create -f consumer8-deployment.yaml
kubectl create -f consumer9-deployment.yaml
kubectl create -f consumer10-deployment.yaml

7 Description
Start 5 filter groups:
kubectl create -f filterer1-deployment.yaml
kubectl create -f filterer2-deployment.yaml
kubectl create -f filterer3-deployment.yaml
kubectl create -f filterer4-deployment.yaml
kubectl create -f filterer5-deployment.yaml


Expected Result
Runs without error Start 5 filter groups:
kubectl create -f filterer1-deployment.yaml
kubectl create -f filterer2-deployment.yaml
kubectl create -f filterer3-deployment.yaml
kubectl create -f filterer4-deployment.yaml
kubectl create -f filterer5-deployment.yaml

8 Description
Start a producer that reads alert packets from disk and loads them into the Kafka queue:

kubectl create -f sender-deployment.yaml


Expected Result
Runs without error Start a producer that reads alert packets from disk and loads them into the Kafka queue:

kubectl create -f sender-deployment.yaml

9 Description
Determine the name of the alert sender pod with

kubectl get pods

Examine output log files.

kubectl logs <pod name>

Verify that alerts are being sent within 40 seconds by subtracting the timing measurements.
Expected Result
Similar to

kubectl logs sender-7d6f98586f-nhwfj
visit: 1570.     time: 1530588618.0313473
visits finished: 1      time: 1530588653.5614944
visit: 1571.     time: 1530588657.0087624
visits finished: 2      time: 1530588692.506188
visit: 1572.     time: 1530588696.0051727
visits finished: 3      time: 1530588731.5900314

Determine the name of the alert sender pod with

kubectl get pods

Examine output log files.

kubectl logs <pod name>

Verify that alerts are being sent within 40 seconds by subtracting the timing measurements.
10 Description
Determine the name of the consumer pods with

kubectl get pods

Examine output log files.

kubectl logs <pod name>

The packet log should show deserialized alert packets with contents matching the input packets.
Expected Result
Similar to

{'alertId': 12132024420, 'l1dbId': 71776805594116, 'diaSource': {'diaSourceId':
73499448928374785, 'ccdVisitId': 2020011570, 'diaObjectId': 71776805594116, 'ssO
bjectId': None, 'parentDiaSourceId': None, 'midPointTai': 59595.37041, 'filterNa
me': 'y', 'ra': 172.24912810036074, 'decl': -80.64214929176521, 'ra_decl_Cov': {
'raSigma': 0.0003428002819418907, 'declSigma': 0.00027273103478364646, 'ra_decl_
Cov': 0.000628734880592674}, 'x': 2979.08837890625, 'y': 3843.328857421875, 'x_y
_Cov': {'xSigma': 0.6135467886924744, 'ySigma': 0.77132648229599, 'x_y_Cov': 0.0
007463791407644749}, 'apFlux': None, 'apFluxErr': None, 'snr': 0.366516500711441
04, 'psFlux': 7.698232025177276e-07, 'psRa': None, 'psDecl': None, 'ps_Cov': Non
e, 'psLnL': None, 'psChi2': None, 'psNdata': None, 'trailFlux': None, 'trailRa':
etc. Determine the name of the consumer pods with

kubectl get pods

Examine output log files.

kubectl logs <pod name>

The packet log should show deserialized alert packets with contents matching the input packets.

Requirements Traceability

Requirements Test Cases
LVV-3 - DMS-REQ-0002-V-01: Transient Alert Distribution LVV-T217
LVV-7 - DMS-REQ-0010-V-01: Difference Exposures LVV-T18, LVV-T20
LVV-12 - DMS-REQ-0029-V-01: Generate Photometric Zeropoint for Visit Image LVV-T19
LVV-13 - DMS-REQ-0030-V-01: Generate WCS for Visit Images LVV-T19
LVV-29 - DMS-REQ-0069-V-01: Processed Visit Images LVV-T18, LVV-T19
LVV-30 - DMS-REQ-0070-V-01: Generate PSF for Visit Images LVV-T19
LVV-31 - DMS-REQ-0072-V-01: Processed Visit Image Content LVV-T19
LVV-32 - DMS-REQ-0074-V-01: Difference Exposure Attributes LVV-T20
LVV-100 - DMS-REQ-0269-V-01: DIASource Catalog LVV-T18, LVV-T21
LVV-101 - DMS-REQ-0270-V-01: Faint DIASource Measurements LVV-T21
LVV-102 - DMS-REQ-0271-V-01: DIAObject Catalog LVV-T18, LVV-T22
LVV-103 - DMS-REQ-0272-V-01: DIAObject Attributes LVV-T22
LVV-116 - DMS-REQ-0285-V-01: Level 1 Source Association LVV-T22
LVV-139 - DMS-REQ-0308-V-01: Software Architecture to Enable Community Re-Use LVV-T17, LVV-T216
LVV-158 - DMS-REQ-0327-V-01: Background Model Calculation LVV-T19
LVV-162 - DMS-REQ-0331-V-01: Computing Derived Quantities LVV-T21, LVV-T22
LVV-173 - DMS-REQ-0342-V-01: Alert Filtering Service LVV-T218
LVV-174 - DMS-REQ-0343-V-01: Performance Requirements for LSST Alert Filtering Service LVV-T218
LVV-178 - DMS-REQ-0347-V-01: Measurements in catalogs LVV-T21, LVV-T22
LVV-179 - DMS-REQ-0348-V-01: Pre-defined alert filters LVV-T218
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment