Last active
August 29, 2015 14:00
-
-
Save brijeshb42/11036459 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| /* | |
| * Cryptography and Network Security Assignment (CNWS) | |
| * Topic : Finite Fields of the Form GF(p) [Galois Field] | |
| * Name : Brijesh Bittu | |
| * Roll : BE/1091/2010 | |
| * Branch : ECE | |
| */ | |
| #include <stdio.h> | |
| #include <stdlib.h> | |
| #include <math.h> | |
| // to check whether the input is prime or not | |
| int isPrime(int); | |
| // to find the multiplicative inverse of a(mod p) | |
| int multiplicativeInverse(int,int); | |
| // format the output | |
| void underScore(int); | |
| // to calculate the addition table | |
| void genAdditionTable(int*,int); | |
| // to calculate the additive inverse of numbers 0,1,2,....,p-1 | |
| void genAdditiveInverse(int*,int*,int); | |
| // to calculate the multiplication table | |
| void genMultiplicationTable(int*,int); | |
| /* to calculate the multiplicative inverse of numbers 0,1,2,....,p-1 | |
| * using Extended Euclidean Algorithm | |
| */ | |
| void genMultiplicativeInverse(int*,int*,int); | |
| int main(int argc, char const *argv[]) | |
| { | |
| int p,i,j; | |
| int *add,*mul,*addI,*mulI; | |
| printf("Enter a prime number p for GF(p): "); | |
| scanf("%d",&p); | |
| while(!isPrime(p)){ | |
| printf("Enter a prime number p for GF(p): "); | |
| scanf("%d",&p); | |
| } | |
| genAdditionTable(add,p); | |
| genMultiplicationTable(mul,p); | |
| genAdditiveInverse(addI,add,p); | |
| genMultiplicativeInverse(mulI,mul,p); | |
| return 0; | |
| } | |
| int isPrime(int p){ | |
| int i; | |
| int sq = sqrt(p); | |
| for(i=2;i<=sq;i++){ | |
| if(p%i==0) | |
| return 0; | |
| } | |
| return 1; | |
| } | |
| int multiplicativeInverse(int a,int b){ | |
| if(a==0) return -1; | |
| int b0 = b, t, q; | |
| int x0 = 0, x1 = 1; | |
| if(b==1) return 1; | |
| while(a>1){ | |
| q = a/b; | |
| t = b, b = a%b, a = t; | |
| t = x0, x0 = x1 - q*x0, x1 = t; | |
| } | |
| if(x1<0) | |
| x1+=b0; | |
| return x1; | |
| } | |
| void underScore(int p){ | |
| int i; | |
| printf("\n"); | |
| for(i=0;i<=p;i++){ | |
| printf("______"); | |
| } | |
| printf("\n"); | |
| } | |
| void genAdditionTable(int *add,int p){ | |
| int i,j; | |
| printf("\nAddition table for p = %d\n\n", p); | |
| add = (int*)malloc(sizeof(int)*p*p); | |
| printf(" + | "); | |
| for(i=0;i<p;i++){ | |
| printf("%3d | ", i); | |
| } | |
| underScore(p); | |
| for(i=0;i<p;i++){ | |
| printf("%3d | ", i); | |
| for(j=0;j<p;j++){ | |
| *((add + (p*(i)))+j) = (i+j)%p; | |
| printf("%3d | ", *((add + (p*(i)))+j)); | |
| } | |
| printf("\n"); | |
| } | |
| printf("\n"); | |
| } | |
| void genAdditiveInverse(int *ai,int *a,int p){ | |
| ai = (int*)malloc(sizeof(int)*p); | |
| int i; | |
| printf("\nAdditive Inverse table for p = %d:\n", p); | |
| printf(" w | -w \n"); | |
| for(i=0;i<p;i++){ | |
| if(i==0) | |
| *(ai+i) = 0; | |
| else | |
| *(ai+i) = p-i; | |
| printf("%3d |%3d\n", i,*(ai+i)); | |
| } | |
| } | |
| void genMultiplicationTable(int *mul,int p){ | |
| int i,j; | |
| printf("\nMultiplication table for p = %d\n\n", p); | |
| mul = (int*)malloc(sizeof(int)*p*p); | |
| printf(" * | "); | |
| for(i=0;i<p;i++){ | |
| printf("%3d | ", i); | |
| } | |
| underScore(p); | |
| for(i=0;i<p;i++){ | |
| printf("%3d | ", i); | |
| for(j=0;j<p;j++){ | |
| *((mul + (p*(i)))+j) = (i*j)%p; | |
| printf("%3d | ", *((mul + (p*(i)))+j)); | |
| } | |
| printf("\n"); | |
| } | |
| printf("\n"); | |
| } | |
| void genMultiplicativeInverse(int *ai,int *mul,int p){ | |
| ai = (int*)malloc(sizeof(int)*p); | |
| int i; | |
| printf("\nMultiplicative Inverse table for p = %d:\n", p); | |
| printf(" w | w^(-1) \n"); | |
| for(i=0;i<p;i++){ | |
| *(ai+i) = multiplicativeInverse(i,p); | |
| printf("%3d |%3d\n", i,*(ai+i)); | |
| } | |
| } |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment