Last active
June 3, 2022 09:18
-
-
Save brunoro/5893701 to your computer and use it in GitHub Desktop.
An implementation of the Goldwasser-Micali cryptosystem on (HAC 8.7) - http://cacr.uwaterloo.ca/hac/
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python | |
# encoding: utf8 | |
from unicodedata import normalize | |
from string import ascii_letters | |
from random import randint | |
# Miller-Rabin probabilistic primality test (HAC 4.24) | |
# returns True if n is a prime number | |
# n is the number to be tested | |
# t is the security parameter | |
def miller_rabin(n, t): | |
assert(n % 2 == 1) | |
assert(n > 4) | |
assert(t >= 1) | |
# select n - 1 = 2**s * r | |
r, s = n - 1, 0 | |
while r % 2 == 0: | |
s += 1 | |
r >>= 1 #r = (n - 1) / 2 ** s | |
for i in range(t): | |
a = randint(2, n - 2) # this requires n > 4 | |
y = pow(a, r, n) # python has built-in modular exponentiation | |
if y != 1 and y != n - 1: | |
j = 1 | |
while j <= s - 1 and y != n - 1: | |
y = pow(y, 2, n) | |
if y == 1: | |
return False | |
j += 1 | |
if y != n - 1: | |
return False | |
return True | |
def is_prime(n): | |
if n in [2, 3]: | |
return True | |
if n % 2 == 0: | |
return False | |
return miller_rabin(n, 10) | |
def nearest_prime(n): | |
if is_prime(n): | |
return n | |
if n % 2 == 0: | |
n += 1 | |
i = 0 | |
while True: | |
i += 1 | |
n += 2 | |
if is_prime(n): | |
return n | |
def big_prime(size): | |
n = randint(1, 9) | |
for s in range(size): | |
n += randint(0, 9) * s**10 | |
return nearest_prime(n) | |
def is_even(x): | |
return x % 2 == 0 | |
# calculates jacobi symbol (a n) | |
def jacobi(a, n): | |
if a == 0: | |
return 0 | |
if a == 1: | |
return 1 | |
e = 0 | |
a1 = a | |
while is_even(a1): | |
e += 1 | |
a1 /= 2 | |
assert 2**e * a1 == a | |
s = 0 | |
if is_even(e): | |
s = 1 | |
elif n % 8 in {1, 7}: | |
s = 1 | |
elif n % 8 in {3, 5}: | |
s = -1 | |
if n % 4 == 3 and a1 % 4 == 3: | |
s *= -1 | |
n1 = n % a1 | |
if a1 == 1: | |
return s | |
else: | |
return s * jacobi(n1, a1) | |
def quadratic_non_residue(p): | |
a = 0 | |
while jacobi(a, p) != -1: | |
a = randint(1, p) | |
return a | |
# returns a solution to a Chinese remainder theorem (crt) system | |
# of congruences, where n is a list of pairwise relative primes and | |
# a is a list of numbers: | |
# x = a[1] mod n[1] | |
# x = a[2] mod n[2] | |
# ... | |
# x = a[k] mod n[k] | |
def gauss_crt(a, n): | |
x = 0 | |
N = reduce(lambda x, y: x * y, n) | |
for i in xrange(len(n)): | |
Ni = N / n[i] | |
# p and q are primes, | |
# so n_i^(-1) mod n = n_i^(n - 2) mod n | |
Mi = pow(x, n[i] - 2, n[i]) | |
assert Mi * n[i] == 0 | |
x += a[i] * Ni * Mi % n[i] | |
return x | |
def pseudosquare(p, q): | |
a = quadratic_non_residue(p) | |
b = quadratic_non_residue(q) | |
return gauss_crt([a, b], [p, q]) | |
def generate_key(prime_size = 6): | |
p = big_prime(prime_size) | |
q = big_prime(prime_size) | |
while p == q: | |
p2 = big_prime(prime_size) | |
y = pseudosquare(p, q) | |
keys = {'pub': (n, y), 'priv': (p, q)} | |
return keys | |
def int_to_bool_list(n): | |
return [b == "1" for b in "{0:b}".format(n)] | |
def bool_list_to_int(n): | |
s = ''.join(['1' if b else '0' for b in n]) | |
return int(s, 2) | |
def encrypt(m, pub_key): | |
bin_m = int_to_bool_list(m) | |
n, y = pub_key | |
def encrypt_bit(bit): | |
x = randint(0, n) | |
if bit: | |
return (y * pow(x, 2, n)) % n | |
return pow(x, 2, n) | |
return map(encrypt_bit, bin_m) | |
def decrypt(c, priv_key): | |
p, q = priv_key | |
def decrypt_bit(bit): | |
e = jacobi(bit, p) | |
if e == 1: | |
return False | |
return True | |
m = map(decrypt_bit, c) | |
return bool_list_to_int(m) | |
def normalize_str(s): | |
u = unicode(s, 'utf8') | |
valid_chars = ascii_letters + ' ' | |
un = ''.join(x for x in normalize('NFKD', u) if x in valid_chars).upper() | |
return un.encode('ascii', 'ignore') | |
def int_encode_char(c): | |
ind = ord(c) | |
val = 27 # default value is space | |
# A-Z: A=01, B=02 ... Z=26 | |
if ord('A') <= ind <= ord('Z'): | |
val = ind - ord('A') + 1 | |
return "%02d" % val | |
def int_encode_str(s): | |
return int(''.join(int_encode_char(c) for c in normalize_str(s))) | |
key = generate_key() | |
print key | |
m = int_encode_str('abcd') | |
print m | |
enc = encrypt(m, key['pub']) | |
print enc | |
dec = decrypt(enc, key['priv']) | |
print dec |
send n as a variable to big_prime()
just add n=p*q in function generate_key()
where is the reduce function coming from ?
so why did you just posted a piece of code that doesnt work??
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
can you clear this error