#Job Array
#!/usr/bin/env bash
#BSUB -J align[1-63]
#BSUB -e align.%J.%I.err
#BSUB -o align.%J.%I.out
#BSUB -q normal
#BSUB -R "select[mem>16] rusage[mem=16] span[hosts=1]"
#BSUB -n 12
#!/usr/bin/env python | |
# encoding: utf-8 | |
""" | |
Add a piece or all of the index read back onto R1 (or R2). | |
""" | |
from itertools import izip | |
from toolshed import nopen | |
def readfx(fh): | |
# https://github.com/lh3/readfq/blob/master/readfq.py |
#Job Array
#!/usr/bin/env bash
#BSUB -J align[1-63]
#BSUB -e align.%J.%I.err
#BSUB -o align.%J.%I.out
#BSUB -q normal
#BSUB -R "select[mem>16] rusage[mem=16] span[hosts=1]"
#BSUB -n 12
#!/usr/bin/env python | |
# encoding: utf-8 | |
""" | |
Join reads based on local alignment, taking higher quality base where mismatches | |
are present. | |
""" | |
import sys, string, multiprocessing | |
from Bio import pairwise2 | |
from toolshed import nopen | |
from itertools import islice, izip, izip_longest |
import editdist | |
def distance(a, b): | |
""" | |
Find best edit distance between two strings of potentially uneven length. | |
>>> import editdist | |
>>> distance("abc", "abc") | |
0 | |
>>> distance("abc", "abcdef") |
#!/usr/bin/env python | |
# coding=utf-8 | |
""" | |
Download the best resolution of the top <limit> video from subreddit 'videos' | |
to <out> directory. | |
""" | |
import multiprocessing | |
import os | |
import pafy |
#!/usr/bin/env python | |
# coding=utf-8 | |
""" | |
Runs bcl2fastq creating fastqs and concatenates fastqs across lanes. Intended | |
to be used with NextSeq data and it does not do any cleanup! Original dumped | |
fastqs will remain along with all of the bcl files. | |
""" | |
from __future__ import print_function |
# setting up AMI | |
sudo service docker stop | |
sudo rm -rf /var/lib/docker | |
# update the image | |
sudo yum update -y | |
sudo yum install -y mdadm | |
sudo yum install -y wget | |
wget https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh | |
bash Miniconda3-latest-Linux-x86_64.sh -b -f -p $HOME/miniconda |
params.bams | |
// mosdepth is going to need a prefix, a bam, and its index | |
bams_ch = Channel | |
// grab the bams and/or crams | |
.fromPath(params.bams, checkIfExists: true) | |
// set the first element to the basename of the file without its extension | |
// the second element to the alignments (bam or cram) | |
// and the third element to the index | |
.map { file -> tuple(file.baseName, file, file + ("${file}".endsWith('.cram') ? '.crai' : '.bai')) } |
Grab 5 bams and their indexes from 1000G to represent our alignments.
mkdir data && cd data
wget ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase1/data/HG00096/alignment/HG00096.chrom20.ILLUMINA.bwa.GBR.low_coverage.20101123.bam
wget ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase1/data/HG00096/alignment/HG00096.chrom20.ILLUMINA.bwa.GBR.low_coverage.20101123.bam.bai
wget ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase1/data/HG00097/alignment/HG00097.chrom20.SOLID.bfast.GBR.low_coverage.20101123.bam
wget ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase1/data/HG00097/alignment/HG00097.chrom20.SOLID.bfast.GBR.low_coverage.20101123.bam.bai