Created
April 10, 2012 06:28
-
-
Save bryanbibat/2348802 to your computer and use it in GitHub Desktop.
Basic feedforward neural network that's coded by every kid who took an AI class in college. Test case for XOR training included.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
class Synapse | |
constructor: (@sourceNeuron, @destNeuron) -> | |
@prevWeight = @weight = (Math.random() * 2.0) - 1.0 | |
class Neuron | |
learningRate: 1.0 | |
momentum: 0.3 | |
constructor: -> | |
@synapsesIn = [] | |
@synapsesOut = [] | |
@prevThreshold = @threshold = (Math.random() * 2.0) - 1.0 | |
calculateOutput: -> | |
activation = (@synapsesIn.reduce (sum, synapse) -> | |
sum + synapse.weight * synapse.sourceNeuron.output | |
, 0.0) | |
activation -= @threshold | |
@output = 1.0 / (1.0 + Math.exp(-activation)) | |
derivative: -> | |
@output * (1 - @output) | |
outputTrain: (rate, target) -> | |
@error = (target - @output) * @derivative() | |
@updateWeights(rate) | |
hiddenTrain: (rate) -> | |
@error = @derivative() * (@synapsesOut.reduce (sum, synapse) -> | |
sum + synapse.prevWeight * synapse.destNeuron.error | |
, 0.0) | |
@updateWeights(rate) | |
updateWeights: (rate) -> | |
for synapse in @synapsesIn | |
temp = synapse.weight | |
synapse.weight += (rate * @learningRate * @error * synapse.sourceNeuron.output) + | |
(@momentum * (synapse.weight - synapse.prevWeight)) | |
synapse.prevWeight = temp | |
temp = @threshold | |
@threshold += (@momentum * (@threshold - @prevThreshold)) - (rate * @learningRate * @error) | |
@prevThreshold = temp | |
class NeuralNetwork | |
constructor: (inputs, hidden, outputs) -> | |
@inputLayer = (new Neuron for [1..inputs]) | |
@hiddenLayer = (new Neuron for [1..hidden]) | |
@outputLayer = (new Neuron for [1..outputs]) | |
for inputNeuron in @inputLayer | |
for hiddenNeuron in @hiddenLayer | |
synapse = new Synapse(inputNeuron, hiddenNeuron) | |
inputNeuron.synapsesOut.push synapse | |
hiddenNeuron.synapsesIn.push synapse | |
for hiddenNeuron in @hiddenLayer | |
for outputNeuron in @outputLayer | |
synapse = new Synapse(hiddenNeuron, outputNeuron) | |
hiddenNeuron.synapsesOut.push synapse | |
outputNeuron.synapsesIn.push synapse | |
train: (inputs, targets) -> | |
@feedforward(inputs) | |
rate = 0.3 | |
neuron.outputTrain(rate, targets[idx]) for neuron, idx in @outputLayer | |
neuron.hiddenTrain(rate) for neuron in @hiddenLayer | |
feedforward: (inputs) -> | |
neuron.output = inputs[idx] for neuron, idx in @inputLayer | |
neuron.calculateOutput() for neuron in @hiddenLayer | |
neuron.calculateOutput() for neuron in @outputLayer | |
currentOutputs: -> (neuron.output for neuron in @outputLayer) | |
xor = new NeuralNetwork(2, 10, 1) | |
for i in [1..10000] | |
xor.train([0, 0], [0]) | |
xor.train([1, 0], [1]) | |
xor.train([0, 1], [1]) | |
xor.train([1, 1], [0]) | |
xor.feedforward([0, 0]) | |
console.log xor.currentOutputs() | |
xor.feedforward([0, 1]) | |
console.log xor.currentOutputs() | |
xor.feedforward([1, 0]) | |
console.log xor.currentOutputs() | |
xor.feedforward([1, 1]) | |
console.log xor.currentOutputs() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
class Synapse | |
attr_accessor :weight, :prev_weight | |
attr_accessor :source_neuron, :dest_neuron | |
def initialize(source_neuron, dest_neuron, prng) | |
self.source_neuron = source_neuron | |
self.dest_neuron = dest_neuron | |
self.prev_weight = self.weight = prng.rand(-1.0..1.0) | |
end | |
end | |
class Neuron | |
LEARNING_RATE = 1.0 | |
MOMENTUM = 0.3 | |
attr_accessor :synapses_in, :synapses_out | |
attr_accessor :threshold, :prev_threshold, :error | |
attr_accessor :output | |
def initialize(prng) | |
self.prev_threshold = self.threshold = prng.rand(-1.0..1.0) | |
self.synapses_in = [] | |
self.synapses_out = [] | |
end | |
def calculate_output | |
# calculate output based on the previous layer | |
# use logistic function | |
activation = synapses_in.inject(0.0) do |sum, synapse| | |
sum + synapse.weight * synapse.source_neuron.output | |
end | |
activation -= threshold | |
self.output = 1.0 / (1.0 + Math.exp(-activation)) | |
end | |
def derivative | |
output * (1 - output) | |
end | |
def output_train(rate, target) | |
self.error = (target - output) * derivative | |
update_weights(rate) | |
end | |
def hidden_train(rate) | |
self.error = synapses_out.inject(0.0) do |sum, synapse| | |
sum + synapse.prev_weight * synapse.dest_neuron.error | |
end * derivative | |
update_weights(rate) | |
end | |
def update_weights(rate) | |
synapses_in.each do |synapse| | |
temp_weight = synapse.weight | |
synapse.weight += (rate * LEARNING_RATE * error * synapse.source_neuron.output) + | |
(MOMENTUM * ( synapse.weight - synapse.prev_weight)) | |
synapse.prev_weight = temp_weight | |
end | |
temp_threshold = threshold | |
self.threshold += (rate * LEARNING_RATE * error * -1) + | |
(MOMENTUM * (threshold - prev_threshold)) | |
self.prev_threshold = temp_threshold | |
end | |
end | |
class NeuralNetwork | |
attr_accessor :prng | |
def initialize(inputs, hidden, outputs) | |
self.prng = Random.new | |
@input_layer = (1..inputs).map { Neuron.new(prng) } | |
@hidden_layer = (1..hidden).map { Neuron.new(prng) } | |
@output_layer = (1..outputs).map { Neuron.new(prng) } | |
@input_layer.product(@hidden_layer).each do |source, dest| | |
synapse = Synapse.new(source, dest, prng) | |
source.synapses_out << synapse | |
dest.synapses_in << synapse | |
end | |
@hidden_layer.product(@output_layer).each do |source, dest| | |
synapse = Synapse.new(source, dest, prng) | |
source.synapses_out << synapse | |
dest.synapses_in << synapse | |
end | |
end | |
def train(inputs, targets) | |
feed_forward(inputs) | |
@output_layer.zip(targets).each do |neuron, target| | |
neuron.output_train(0.3, target) | |
end | |
@hidden_layer.each { |neuron| neuron.hidden_train(0.3) } | |
end | |
def feed_forward(inputs) | |
@input_layer.zip(inputs).each do |neuron, input| | |
neuron.output = input | |
end | |
@hidden_layer.each { |neuron| neuron.calculate_output } | |
@output_layer.each { |neuron| neuron.calculate_output } | |
end | |
def current_outputs | |
@output_layer.map { |neuron| neuron.output } | |
end | |
end | |
require 'benchmark' | |
x = Benchmark.measure do |x| | |
xor = NeuralNetwork.new(2, 10, 1) | |
10000.times do | |
xor.train([0, 0], [0]) | |
xor.train([1, 0], [1]) | |
xor.train([0, 1], [1]) | |
xor.train([1, 1], [0]) | |
end | |
xor.feed_forward([0, 0]) | |
puts xor.current_outputs | |
xor.feed_forward([0, 1]) | |
puts xor.current_outputs | |
xor.feed_forward([1, 0]) | |
puts xor.current_outputs | |
xor.feed_forward([1, 1]) | |
puts xor.current_outputs | |
end | |
puts x |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment