Created
May 20, 2019 15:08
-
-
Save bryanlimy/6d92e1329bfbd750f4d62abb34388bec to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
def encoder_layer(units, d_model, num_heads, dropout, name="encoder_layer"): | |
inputs = tf.keras.Input(shape=(None, d_model), name="inputs") | |
padding_mask = tf.keras.Input(shape=(1, 1, None), name="padding_mask") | |
attention = MultiHeadAttention( | |
d_model, num_heads, name="attention")({ | |
'query': inputs, | |
'key': inputs, | |
'value': inputs, | |
'mask': padding_mask | |
}) | |
attention = tf.keras.layers.Dropout(rate=dropout)(attention) | |
attention = tf.keras.layers.LayerNormalization( | |
epsilon=1e-6)(inputs + attention) | |
outputs = tf.keras.layers.Dense(units=units, activation='relu')(attention) | |
outputs = tf.keras.layers.Dense(units=d_model)(outputs) | |
outputs = tf.keras.layers.Dropout(rate=dropout)(outputs) | |
outputs = tf.keras.layers.LayerNormalization( | |
epsilon=1e-6)(attention + outputs) | |
return tf.keras.Model( | |
inputs=[inputs, padding_mask], outputs=outputs, name=name) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment