Created
May 20, 2019 15:00
-
-
Save bryanlimy/82ff6fa53cb4a98e60d81bc32ea5753b to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
class MultiHeadAttention(tf.keras.layers.Layer): | |
def __init__(self, d_model, num_heads, name="multi_head_attention"): | |
super(MultiHeadAttention, self).__init__(name=name) | |
self.num_heads = num_heads | |
self.d_model = d_model | |
assert d_model % self.num_heads == 0 | |
self.depth = d_model // self.num_heads | |
self.query_dense = tf.keras.layers.Dense(units=d_model) | |
self.key_dense = tf.keras.layers.Dense(units=d_model) | |
self.value_dense = tf.keras.layers.Dense(units=d_model) | |
self.dense = tf.keras.layers.Dense(units=d_model) | |
def split_heads(self, inputs, batch_size): | |
inputs = tf.reshape( | |
inputs, shape=(batch_size, -1, self.num_heads, self.depth)) | |
return tf.transpose(inputs, perm=[0, 2, 1, 3]) | |
def call(self, inputs): | |
query, key, value, mask = inputs['query'], inputs['key'], inputs[ | |
'value'], inputs['mask'] | |
batch_size = tf.shape(query)[0] | |
# linear layers | |
query = self.query_dense(query) | |
key = self.key_dense(key) | |
value = self.value_dense(value) | |
# split heads | |
query = self.split_heads(query, batch_size) | |
key = self.split_heads(key, batch_size) | |
value = self.split_heads(value, batch_size) | |
scaled_attention = scaled_dot_product_attention(query, key, value, mask) | |
scaled_attention = tf.transpose(scaled_attention, perm=[0, 2, 1, 3]) | |
concat_attention = tf.reshape(scaled_attention, | |
(batch_size, -1, self.d_model)) | |
outputs = self.dense(concat_attention) | |
return outputs |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment