Created
May 20, 2019 15:10
-
-
Save bryanlimy/ff6abd8145bb8f3e5c50d47c55b24b0c to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
def decoder_layer(units, d_model, num_heads, dropout, name="decoder_layer"): | |
inputs = tf.keras.Input(shape=(None, d_model), name="inputs") | |
enc_outputs = tf.keras.Input(shape=(None, d_model), name="encoder_outputs") | |
look_ahead_mask = tf.keras.Input( | |
shape=(1, None, None), name="look_ahead_mask") | |
padding_mask = tf.keras.Input(shape=(1, 1, None), name='padding_mask') | |
attention1 = MultiHeadAttention( | |
d_model, num_heads, name="attention_1")(inputs={ | |
'query': inputs, | |
'key': inputs, | |
'value': inputs, | |
'mask': look_ahead_mask | |
}) | |
attention1 = tf.keras.layers.LayerNormalization( | |
epsilon=1e-6)(attention1 + inputs) | |
attention2 = MultiHeadAttention( | |
d_model, num_heads, name="attention_2")(inputs={ | |
'query': attention1, | |
'key': enc_outputs, | |
'value': enc_outputs, | |
'mask': padding_mask | |
}) | |
attention2 = tf.keras.layers.Dropout(rate=dropout)(attention2) | |
attention2 = tf.keras.layers.LayerNormalization( | |
epsilon=1e-6)(attention2 + attention1) | |
outputs = tf.keras.layers.Dense(units=units, activation='relu')(attention2) | |
outputs = tf.keras.layers.Dense(units=d_model)(outputs) | |
outputs = tf.keras.layers.Dropout(rate=dropout)(outputs) | |
outputs = tf.keras.layers.LayerNormalization( | |
epsilon=1e-6)(outputs + attention2) | |
return tf.keras.Model( | |
inputs=[inputs, enc_outputs, look_ahead_mask, padding_mask], | |
outputs=outputs, | |
name=name) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment