-
-
Save bryanyang0528/bcd07eebb67a20777bb6 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
num.iterations <- 1000 | |
# Download South African heart disease data | |
sa.heart <- read.table("http://www-stat.stanford.edu/~tibs/ElemStatLearn/datasets/SAheart.data", sep=",",head=T,row.names=1) | |
x <- sa.heart[,c("age", "ldl")] | |
y <- sa.heart$chd | |
plot(x, pch=21, bg=c("red","green")[factor(y)]) | |
# Function to standardize input values | |
zscore <- function(x, mean.val=NA) { | |
if(is.matrix(x)) return(apply(x, 2, zscore, mean.val=mean.val)) | |
if(is.data.frame(x)) return(data.frame(apply(x, 2, zscore, mean.val=mean.val))) | |
if(is.na(mean.val)) mean.val <- mean(x) | |
sd.val <- sd(x) | |
if(all(sd.val == 0)) return(x) # if all the values are the same | |
(x - mean.val) / sd.val | |
} | |
# Standardize the features | |
x.scaled <- zscore(x) | |
# Gradient descent function | |
grad <- function(x, y, theta) { | |
gradient <- (1 / nrow(y)) * (t(x) %*% (1/(1 + exp(-x %*% t(theta))) - y)) | |
return(t(gradient)) | |
} | |
gradient.descent <- function(x, y, alpha=0.1, num.iterations=500, threshold=1e-5, output.path=FALSE) { | |
# Add x_0 = 1 as the first column | |
m <- if(is.vector(x)) length(x) else nrow(x) | |
if(is.vector(x) || (!all(x[,1] == 1))) x <- cbind(rep(1, m), x) | |
if(is.vector(y)) y <- matrix(y) | |
x <- apply(x, 2, as.numeric) | |
num.features <- ncol(x) | |
# Initialize the parameters | |
theta <- matrix(rep(0, num.features), nrow=1) | |
# Look at the values over each iteration | |
theta.path <- theta | |
for (i in 1:num.iterations) { | |
theta <- theta - alpha * grad(x, y, theta) | |
if(all(is.na(theta))) break | |
theta.path <- rbind(theta.path, theta) | |
if(i > 2) if(all(abs(theta - theta.path[i-1,]) < threshold)) break | |
} | |
if(output.path) return(theta.path) else return(theta.path[nrow(theta.path),]) | |
} | |
unscaled.theta <- gradient.descent(x=x, y=y, num.iterations=num.iterations, output.path=TRUE) | |
scaled.theta <- gradient.descent(x=x.scaled, y=y, num.iterations=num.iterations, output.path=TRUE) | |
summary(glm(chd ~ age + ldl, family = binomial, data=sa.heart)) | |
qplot(1:(nrow(scaled.theta)), scaled.theta[,1], geom=c("line"), xlab="iteration", ylab="theta_1") | |
qplot(1:(nrow(scaled.theta)), scaled.theta[,2], geom=c("line"), xlab="iteration", ylab="theta_2") | |
# Look at output for various different alpha values | |
vary.alpha <- lapply(c(1e-12, 1e-9, 1e-7, 1e-3, 0.1, 0.9), function(alpha) gradient.descent(x=x.scaled, y=y, alpha=alpha, num.iterations=num.iterations, output.path=TRUE)) | |
par(mfrow = c(2, 3)) | |
for (j in 1:6) { | |
plot(vary.alpha[[j]][,2], ylab="area (alpha=1e-9)", xlab="iteration", type="l") | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment