Last active
August 29, 2015 14:02
-
-
Save bryanyang0528/e8000be63720b9c6b2d9 to your computer and use it in GitHub Desktop.
TEXT MINING
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Revised <- read.csv(file="D:/Data/Revised/revised data2013.csv", na.string = "NA", header = T, sep = ",", quote = "\"", dec = ".", fill = T, encoding="ANSI", stringsAsFactors = FALSE ) | |
##載入檔案 | |
library(tm) | |
library(tmcn) | |
library(rJava) | |
library(Rwordseg) | |
##一些TEXT MINING必用的套件 | |
#將每個分詞切開統計次數,沒有切到"字" | |
Detail = Revised[c(16)] | |
R_corpus <- Corpus(DataframeSource(Detail,encoding="ANSI")) | |
##TEXT MINING的特殊物件格式,需要用這個來讀取要分析的文字檔案 | |
#R_corpus <- tm_map(R_corpus, segmentCN) | |
#R_Corpus1 <- Corpus(VectorSource(R_corpus)) | |
##上述兩個套件會把中文依字詞拆開來,但是今天我們的分析只是想整理一下文字檔的內容,不用切到詞彙 | |
tdm <- TermDocumentMatrix(R_corpus) | |
##到這裡就整理出將鋸子拆開來的矩陣檔 | |
#inspect(tdm[1:10,1:2]) | |
library(wordcloud) | |
#載入文字雲套件 | |
m1 <- as.matrix(tdm) | |
v <- sort(rowSums(m1),decreasing = TRUE) | |
#計算每個字詞的FREQ | |
d <- data.frame(word = names(v), freq = v) | |
#轉乘DATA FRAME的格式給文字雲套件吃 | |
wordcloud(d$word, d$freq, min.freq = 10, random.order = F, ordered.colors = F, | |
colors = rainbow(length(row.names(m1)))) | |
write.csv(d, "d.csv", row.names=F) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment