Created
February 11, 2017 18:30
-
-
Save bspeice/81e8cc09f6512d91fba2847629ba2d9a to your computer and use it in GitHub Desktop.
Trying to implement a simple regime switch model in Edward
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import edward as ed | |
from edward import models as md | |
import tensorflow as tf | |
import pandas as pd | |
import numpy as np | |
# Using float32's everywhere because there's no DiscreteUniform, so typing is weird. | |
data = pd.read_csv('txtdata.csv', header=None).values[:,0].astype(dtype=np.float32) | |
n = len(data) | |
alpha_global = 1./n | |
# Model | |
lambda_1 = md.Exponential(alpha_global) | |
lambda_2 = md.Exponential(alpha_global) | |
tau = tf.nn.softplus(tf.Variable(n / 2.)) | |
lambda_ = tf.where(tf.cast(tf.range(n), tf.float32) < tau, tf.ones(n)*lambda_1, tf.ones(n)*lambda_2) | |
x = md.Poisson(lam=lambda_, value=tf.ones(n)*alpha_global) | |
# Inference | |
ql_alpha_1 = tf.nn.softplus(tf.Variable(tf.random_normal([]))) | |
ql_alpha_2 = tf.nn.softplus(tf.Variable(tf.random_normal([]))) | |
ql_1 = md.Exponential(ql_alpha_1) | |
ql_2 = md.Exponential(ql_alpha_2) | |
inference = ed.KLqp({lambda_1: ql_1, lambda_2: ql_2}, {x: data}) | |
inference.run(n_iter=20) | |
# I get some weird results for the loss: | |
# Iteration 1 [ 5%]: Loss = -231632961261790988410899370537385984.000 | |
# Iteration 2 [ 10%]: Loss = 0.000 | |
# Iteration 4 [ 20%]: Loss = -158650697632963589784083628032.000 | |
# Iteration 6 [ 30%]: Loss = 0.000 | |
# Iteration 8 [ 40%]: Loss = 0.000 | |
# Iteration 10 [ 50%]: Loss = -158650697632963589784083628032.000 | |
# Iteration 12 [ 60%]: Loss = 0.000 | |
# Iteration 14 [ 70%]: Loss = 0.000 | |
# Iteration 16 [ 80%]: Loss = -158650697632963589784083628032.000 | |
# Iteration 18 [ 90%]: Loss = 0.000 | |
# Iteration 20 [100%]: Loss = 0.000 |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment