Skip to content

Instantly share code, notes, and snippets.

from scipy.special import logsumexp
class BernoulliMixture:
def __init__(self, n_components, max_iter, tol=1e-3):
self.n_components = n_components
self.max_iter = max_iter
self.tol = tol
def fit(self,x):
class AttentionPool(nn.Module):
def __init__(self, embed_dim):
self.attention = nn.Linear(embed_dim, 1)
def forward(self, x): # x: (batch, seq_len, embed_dim)
scores = self.attention(x) # (batch, seq_len, 1)
weights = F.softmax(scores, dim=1) # (batch, seq_len, 1)
return (weights * x).sum(dim=1) # (batch, embed_dim)
class ReasonCodeTransformer(nn.Module):
import pandas as pd
from evidently.report import Report
from evidently.metric_preset import DataDriftPreset, ConceptDriftPreset
from evidently.test_suite import TestSuite
from evidently.tests import DataDriftTest, ConceptDriftTest
# Load your data
reference_data = pd.read_csv('reference_data.csv') # Your initial training data
current_data = pd.read_csv('current_data.csv') # Your new production data