Created
March 20, 2016 18:11
-
-
Save btseytlin/63d6c9d0f4c890259fdf to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import math | |
import csv | |
input_file = 'output_5k.csv' | |
#N;ComparedIDs;Name;A;ADV;ADVPRO;ANUM;APRO;COM;CONJ;INTJ;NUM;PART;PR;SPRO;V;S;Duplicate; | |
#'i8, object, i4, i4, i4, i4, i4,i4, i4, i4, i4, i4,i4, i4, i4, i4,i4,i4') | |
#"i8,S30,i4, i4, i4, i4, i4,i4, i4, i4, i4, i4,i4, i4, i4, i4,i4,i4,i4" | |
#data = np.loadtxt(input_file, delimiter=';', usecols=(2,4,5,6,7,8,9,10,11,12,13,14,15,16,17),skiprows=1, dtype=int) | |
#read potentially huge csv file | |
with open(input_file, 'rb') as csvfile: | |
num_lines = sum(1 for line in csvfile) | |
with open(input_file, 'r') as csvfile: | |
reader = csv.reader(csvfile, delimiter=";") | |
memmap = np.memmap('buffer', dtype = 'int', mode = 'w+', shape=(num_lines, 15)) | |
i = 0 | |
for row in reader: | |
if i==0: | |
next(reader) | |
i+=1 | |
continue | |
row = [int(x) for x in row[2:17]] | |
#print(row) | |
memmap[i, :] = row | |
i+=1 | |
memmap.mode = 'r' | |
repeat_indexes = ["Name","A","ADV","ADVPRO","ANUM","APRO","COM","CONJ","INTJ","NUM","PART","PR","SPRO","V","S"] | |
amount_dupes = 0 | |
def get_sum_repeats_duplicates(): | |
global amount_dupes | |
patrition_size = int(num_lines/10) | |
i = 0 | |
sum_dupes = 0 | |
while i < num_lines: | |
j = i + patrition_size | |
if j > num_lines: | |
j = num_lines - 1 | |
submap = memmap[i:j] | |
mask = submap[:,14] == 1 | |
duplicates = submap[mask] | |
amount_dupes += len(duplicates) | |
sum_dupes += sum([ sum(x[:13]) for x in duplicates ] ) | |
i+= patrition_size | |
return sum_dupes / amount_dupes | |
amount_nondupes = 0 | |
def get_sum_repeats_non_duplicates(): | |
global amount_nondupes | |
patrition_size = int(num_lines/10) | |
i = 0 | |
sum_nondupes = 0 | |
while i < num_lines: | |
j = i + patrition_size | |
if j > num_lines: | |
j = num_lines - 1 | |
submap = memmap[i:j] | |
mask = submap[:,14] != 1 | |
non_duplicates = submap[mask] | |
amount_nondupes += len(non_duplicates) | |
sum_nondupes += sum([ sum(x[:13]) for x in non_duplicates ] ) | |
i+= patrition_size | |
return sum_nondupes / amount_nondupes | |
#Calculate average amount of repeats on duplicates | |
print('Average sum of repeats') | |
print('Average amount of repeats for duplicates:', get_sum_repeats_duplicates() ) | |
print('Average amount of repeats for non duplicates:', get_sum_repeats_non_duplicates() ) | |
def get_sum_repeats_index_dupes(ind): | |
global amount_dupes | |
patrition_size = int(num_lines/10) | |
i = 0 | |
sum_dupes = 0 | |
while i < num_lines: | |
j = i + patrition_size | |
if j > num_lines: | |
j = num_lines - 1 | |
submap = memmap[i:j] | |
mask = submap[:,14] == 1 | |
duplicates = submap[mask] | |
column = duplicates[:,ind] | |
sum_dupes += column.sum() | |
i+= patrition_size | |
return sum_dupes / amount_dupes | |
def get_sum_repeats_index_nondupes(ind): | |
global amount_nondupes | |
patrition_size = int(num_lines/10) | |
i = 0 | |
sum_nondupes = 0 | |
while i < num_lines: | |
j = i + patrition_size | |
if j > num_lines: | |
j = num_lines - 1 | |
submap = memmap[i:j] | |
mask = submap[:,14] != 1 | |
non_duplicates = submap[mask] | |
column = non_duplicates[:,ind] | |
sum_nondupes += column.sum() | |
i+= patrition_size | |
return sum_nondupes / amount_nondupes | |
for i in range(len(repeat_indexes)): | |
index = repeat_indexes[i] | |
print("Average amount of " + index + " repeats in duplicates", get_sum_repeats_index_dupes(i) ) | |
print("Average amount of " + index + " repeats in non_duplicates", get_sum_repeats_index_nondupes(i) ) | |
#non_duplicates = data[ data[:17] == 0] | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment