Skip to content

Instantly share code, notes, and snippets.

@btseytlin
Created July 19, 2023 15:39
Show Gist options
  • Select an option

  • Save btseytlin/8635d68f43dbda72c226f1dd3c6d7015 to your computer and use it in GitHub Desktop.

Select an option

Save btseytlin/8635d68f43dbda72c226f1dd3c6d7015 to your computer and use it in GitHub Desktop.
import logging
import os
import sys
from dataclasses import dataclass, field
from typing import Optional
import torch
import transformers
from datasets import load_dataset
from torchvision.transforms import (
Compose,
Lambda,
Normalize,
RandomHorizontalFlip,
RandomResizedCrop,
ToTensor,
)
from torchvision.transforms.functional import InterpolationMode
from transformers import (
HfArgumentParser,
Trainer,
TrainingArguments,
ViTImageProcessor,
ViTMAEConfig,
ViTMAEForPreTraining,
)
from transformers.integrations import ClearMLCallback, TensorBoardCallback
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import check_min_version, send_example_telemetry
from transformers.utils.versions import require_version
""" Pre-training a 🤗 ViT model as an MAE (masked autoencoder), as proposed in https://arxiv.org/abs/2111.06377."""
logger = logging.getLogger(__name__)
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.32.0.dev0")
require_version(
"datasets>=1.8.0",
"To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt",
)
class CustomTrainer(Trainer):
def _remove_unused_columns(self, dataset, **kwargs):
return dataset
class CustomClearMLCallback(ClearMLCallback):
def on_log(
self, args, state, control, model=None, tokenizer=None, logs=None, **kwargs
):
if self._clearml is None:
return
if not self._initialized:
self.setup(args, state, model, tokenizer, **kwargs)
if state.is_world_process_zero:
eval_prefix = "eval_"
eval_prefix_len = len(eval_prefix)
test_prefix = "test_"
test_prefix_len = len(test_prefix)
single_value_scalars = [
"train_runtime",
"train_samples_per_second",
"train_steps_per_second",
"train_loss",
"total_flos",
"epoch",
]
for k, v in logs.items():
if isinstance(v, (int, float)):
if k in single_value_scalars:
self._clearml_task.get_logger().report_scalar(
title=k,
series=k,
iteration=state.global_step,
value=v,
)
elif k.startswith(eval_prefix):
self._clearml_task.get_logger().report_scalar(
title=k[eval_prefix_len:],
series="eval",
value=v,
iteration=state.global_step,
)
elif k.startswith(test_prefix):
self._clearml_task.get_logger().report_scalar(
title=k[test_prefix_len:],
series="test",
value=v,
iteration=state.global_step,
)
else:
self._clearml_task.get_logger().report_scalar(
title=k,
series="train",
value=v,
iteration=state.global_step,
)
else:
logger.warning(
"Trainer is attempting to log a value of "
f'"{v}" of type {type(v)} for key "{k}" as a scalar. '
"This invocation of ClearML logger's report_scalar() "
"is incorrect so we dropped this attribute."
)
@dataclass
class DataTrainingArguments:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
Using `HfArgumentParser` we can turn this class
into argparse arguments to be able to specify them on
the command line.
"""
dataset_name: Optional[str] = field(
default="cifar10",
metadata={"help": "Name of a dataset from the datasets package"},
)
dataset_config_name: Optional[str] = field(
default=None,
metadata={
"help": "The configuration name of the dataset to use (via the datasets library)."
},
)
image_column_name: Optional[str] = field(
default=None, metadata={"help": "The column name of the images in the files."}
)
train_dir: Optional[str] = field(
default=None, metadata={"help": "A folder containing the training data."}
)
validation_dir: Optional[str] = field(
default=None, metadata={"help": "A folder containing the validation data."}
)
train_val_split: Optional[float] = field(
default=0.15, metadata={"help": "Percent to split off of train for validation."}
)
max_train_samples: Optional[int] = field(
default=None,
metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
)
},
)
max_eval_samples: Optional[int] = field(
default=None,
metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of evaluation examples to this "
"value if set."
)
},
)
def __post_init__(self):
data_files = {}
if self.train_dir is not None:
data_files["train"] = self.train_dir
if self.validation_dir is not None:
data_files["val"] = self.validation_dir
self.data_files = data_files if data_files else None
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/image processor we are going to pre-train.
"""
model_name_or_path: str = field(
default="facebook/vit-mae-base",
metadata={
"help": (
"The model checkpoint for weights initialization.Don't set if you want to train a model from scratch."
)
},
)
config_name: Optional[str] = field(
default="facebook/vit-mae-base",
metadata={
"help": "Pretrained config name or path if not the same as model_name_or_path"
},
)
config_overrides: Optional[str] = field(
default=None,
metadata={
"help": (
"Override some existing default config settings when a model is trained from scratch. Example: "
"n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index"
)
},
)
cache_dir: Optional[str] = field(
default=None,
metadata={
"help": "Where do you want to store the pretrained models downloaded from s3"
},
)
model_revision: str = field(
default="main",
metadata={
"help": "The specific model version to use (can be a branch name, tag name or commit id)."
},
)
image_processor_name: str = field(
default=None, metadata={"help": "Name or path of preprocessor config."}
)
use_auth_token: bool = field(
default=False,
metadata={
"help": (
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
"with private models)."
)
},
)
mask_ratio: float = field(
default=0.75,
metadata={
"help": "The ratio of the number of masked tokens in the input sequence."
},
)
norm_pix_loss: bool = field(
default=True,
metadata={
"help": "Whether or not to train with normalized pixel values as target."
},
)
@dataclass
class CustomTrainingArguments(TrainingArguments):
base_learning_rate: float = field(
default=1e-3,
metadata={
"help": "Base learning rate: absolute_lr = base_lr * total_batch_size / 256."
},
)
def collate_fn(examples):
pixel_values = torch.stack([example["pixel_values"] for example in examples])
return {"pixel_values": pixel_values}
def parse_arguments():
parser = HfArgumentParser(
(ModelArguments, DataTrainingArguments, CustomTrainingArguments)
)
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
model_args, data_args, training_args = parser.parse_json_file(
json_file=os.path.abspath(sys.argv[1])
)
else:
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
return model_args, data_args, training_args
def configure_logging(training_args):
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
handlers=[logging.StreamHandler(sys.stdout)],
)
if training_args.should_log:
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
transformers.utils.logging.set_verbosity_info()
log_level = training_args.get_process_log_level()
logger.setLevel(log_level)
transformers.utils.logging.set_verbosity(log_level)
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
def detect_last_checkpoint(training_args):
last_checkpoint = None
if (
os.path.isdir(training_args.output_dir)
and training_args.do_train
and not training_args.overwrite_output_dir
):
last_checkpoint = get_last_checkpoint(training_args.output_dir)
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
"Use --overwrite_output_dir to overcome."
)
elif (
last_checkpoint is not None and training_args.resume_from_checkpoint is None
):
logger.info(
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
)
return last_checkpoint
def create_dataset(data_args, model_args):
ds = load_dataset(
data_args.dataset_name,
data_args.dataset_config_name,
data_files=data_args.data_files,
cache_dir=model_args.cache_dir,
use_auth_token=True if model_args.use_auth_token else None,
)
# If we don't have a validation split, split off a percentage of train as validation.
data_args.train_val_split = (
None if "validation" in ds.keys() else data_args.train_val_split
)
if isinstance(data_args.train_val_split, float) and data_args.train_val_split > 0.0:
split = ds["train"].train_test_split(data_args.train_val_split)
ds["train"] = split["train"]
ds["validation"] = split["test"]
return ds
def load_model_config(model_args):
# Load pretrained model and image processor
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
config_kwargs = {
"cache_dir": model_args.cache_dir,
"revision": model_args.model_revision,
"use_auth_token": True if model_args.use_auth_token else None,
}
if model_args.config_name:
config = ViTMAEConfig.from_pretrained(model_args.config_name, **config_kwargs)
elif model_args.model_name_or_path:
config = ViTMAEConfig.from_pretrained(
model_args.model_name_or_path, **config_kwargs
)
else:
config = ViTMAEConfig()
logger.warning("You are instantiating a new config instance from scratch.")
if model_args.config_overrides is not None:
logger.info(f"Overriding config: {model_args.config_overrides}")
config.update_from_string(model_args.config_overrides)
logger.info(f"New config: {config}")
# adapt config
config.update(
{
"mask_ratio": model_args.mask_ratio,
"norm_pix_loss": model_args.norm_pix_loss,
}
)
return config, config_kwargs
def create_image_processor(model_args, config_kwargs):
if model_args.image_processor_name:
image_processor = ViTImageProcessor.from_pretrained(
model_args.image_processor_name, **config_kwargs
)
elif model_args.model_name_or_path:
image_processor = ViTImageProcessor.from_pretrained(
model_args.model_name_or_path, **config_kwargs
)
else:
image_processor = ViTImageProcessor()
return image_processor
def get_image_column_name(training_args, data_args, ds):
if training_args.do_train:
column_names = ds["train"].column_names
else:
column_names = ds["validation"].column_names
if data_args.image_column_name is not None:
image_column_name = data_args.image_column_name
elif "image" in column_names:
image_column_name = "image"
elif "img" in column_names:
image_column_name = "img"
else:
image_column_name = column_names[0]
return image_column_name
def get_dataset_transforms(image_processor):
if "shortest_edge" in image_processor.size:
size = image_processor.size["shortest_edge"]
else:
size = (image_processor.size["height"], image_processor.size["width"])
transforms = Compose(
[
Lambda(lambda img: img.convert("RGB") if img.mode != "RGB" else img),
RandomResizedCrop(
size, scale=(0.2, 1.0), interpolation=InterpolationMode.BICUBIC
),
RandomHorizontalFlip(),
ToTensor(),
Normalize(mean=image_processor.image_mean, std=image_processor.image_std),
]
)
return transforms
def validate_dataset(ds, training_args):
if training_args.do_train:
if "train" not in ds:
raise ValueError("--do_train requires a train dataset")
if training_args.do_eval:
if "validation" not in ds:
raise ValueError("--do_eval requires a validation dataset")
def shuffle_dataset(ds, seed, max_train_samples):
return ds.shuffle(seed=seed).select(range(max_train_samples))
def cut_dataset(ds, training_args, data_args):
if training_args.do_train:
if data_args.max_train_samples is not None:
ds["train"] = shuffle_dataset(
ds["train"], training_args.seed, data_args.max_train_samples
)
if training_args.do_eval:
if data_args.max_eval_samples is not None:
ds["validation"] = shuffle_dataset(
ds["validation"], training_args.seed, data_args.max_eval_samples
)
return ds
def set_dataset_transforms(ds, transforms, training_args, image_column_name):
def preprocess_images(examples):
examples["pixel_values"] = [
transforms(image) for image in examples[image_column_name]
]
return examples
if training_args.do_train:
ds["train"].set_transform(preprocess_images)
if training_args.do_eval:
ds["validation"].set_transform(preprocess_images)
return ds
def get_absolute_lr(training_args):
total_train_batch_size = (
training_args.train_batch_size
* training_args.gradient_accumulation_steps
* training_args.world_size
)
return training_args.base_learning_rate * total_train_batch_size / 256
def set_absolute_lr(training_args, absolute_lr):
if training_args.base_learning_rate is not None:
training_args.learning_rate = absolute_lr
def prepare_dataset(data_args, model_args, training_args, image_processor):
ds = create_dataset(data_args, model_args)
image_column_name = get_image_column_name(training_args, data_args, ds)
transforms = get_dataset_transforms(image_processor)
validate_dataset(ds, training_args)
cut_dataset(ds, training_args, data_args)
set_dataset_transforms(ds, transforms, training_args, image_column_name)
return ds
def create_model(model_args, config):
if model_args.model_name_or_path:
model = ViTMAEForPreTraining.from_pretrained(
model_args.model_name_or_path,
from_tf=bool(".ckpt" in model_args.model_name_or_path),
config=config,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
)
else:
logger.info("Training new model from scratch")
model = ViTMAEForPreTraining(config)
return model
def get_trainer(model, training_args, ds, image_processor, collate_fn):
trainer = CustomTrainer(
model=model,
args=training_args,
train_dataset=ds["train"] if training_args.do_train else None,
eval_dataset=ds["validation"] if training_args.do_eval else None,
tokenizer=image_processor,
data_collator=collate_fn,
)
os.environ["CLEARML_PROJECT"] = "plantsense"
os.environ["CLEARML_TASK"] = "ViT-MAE debug"
os.environ["CLEARML_LOG_MODEL"] = "True"
trainer.add_callback(
CustomClearMLCallback(),
)
trainer.add_callback(
TensorBoardCallback(),
)
return trainer
def train(training_args, last_checkpoint, trainer):
if training_args.do_train:
checkpoint = None
if training_args.resume_from_checkpoint is not None:
checkpoint = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
checkpoint = last_checkpoint
train_result = trainer.train(resume_from_checkpoint=checkpoint)
trainer.save_model()
trainer.log_metrics("train", train_result.metrics)
trainer.save_metrics("train", train_result.metrics)
trainer.save_state()
def eval(training_args, trainer):
if training_args.do_eval:
metrics = trainer.evaluate()
trainer.log_metrics("eval", metrics)
trainer.save_metrics("eval", metrics)
def main():
model_args, data_args, training_args = parse_arguments()
configure_logging(training_args)
logger.warning(
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
)
logger.info(f"Training/evaluation parameters {training_args}")
config, config_kwargs = load_model_config(model_args)
image_processor = create_image_processor(model_args, config_kwargs)
ds = prepare_dataset(
data_args,
model_args,
training_args,
image_processor,
)
last_checkpoint = detect_last_checkpoint(training_args)
model = create_model(model_args, config)
absolute_lr = get_absolute_lr(training_args)
set_absolute_lr(training_args, absolute_lr)
trainer = get_trainer(
model,
training_args,
ds,
image_processor=image_processor,
collate_fn=collate_fn,
)
train(
training_args,
last_checkpoint,
trainer,
)
eval(training_args, trainer)
if __name__ == "__main__":
main()
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment