Last active
June 23, 2021 13:23
-
-
Save btseytlin/d078012951fd414e086d567d62fe1288 to your computer and use it in GitHub Desktop.
Medium "How to actually forecast COVID-19" embed
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| def sigmoid(x, xmin, xmax, a, b, c, r): | |
| x_scaled = (x - xmin) / (xmax - xmin) | |
| out = (a * np.exp(c * r) + b * np.exp(r * x_scaled)) / (np.exp(c * r) + np.exp(x_scaled * r)) | |
| return out | |
| def stepwise_soft(t, coefficients, r=20, c=0.5): | |
| t_arr = np.array(list(coefficients.keys())) | |
| min_index = np.min(t_arr) | |
| max_index = np.max(t_arr) | |
| if t <= min_index: | |
| return coefficients[min_index] | |
| elif t >= max_index: | |
| return coefficients[max_index] | |
| else: | |
| index = np.min(t_arr[t_arr >= t]) | |
| if len(t_arr[t_arr < index]) == 0: | |
| return coefficients[index] | |
| prev_index = np.max(t_arr[t_arr < index]) | |
| # sigmoid smoothing | |
| q0, q1 = coefficients[prev_index], coefficients[index] | |
| out = sigmoid(t, prev_index, index, q0, q1, c, r) | |
| return out | |
| t_range = np.arange(100) | |
| coefficients = { | |
| 0: 0, | |
| 30: 0.5, | |
| 60: 1, | |
| 100: 0.4, | |
| } | |
| plt.title('Quarantine function example') | |
| plt.scatter(coefficients.keys(), coefficients.values(), label='Points of change of quarantine measures') | |
| plt.plot(t_range, [stepwise_soft(t, coefficients, r=20, c=0.5) for t in t_range], label='Smooth stepwise function') | |
| plt.xlabel('t') | |
| plt.ylabel('Qaurantine level') | |
| plt.legend(loc='lower center', bbox_to_anchor=(0.5, -0.6),) | |
| plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment