Skip to content

Instantly share code, notes, and snippets.

@bugparty
Created February 16, 2024 16:20
Show Gist options
  • Save bugparty/20acbd4541e5c265525ae6e32e979c5d to your computer and use it in GitHub Desktop.
Save bugparty/20acbd4541e5c265525ae6e32e979c5d to your computer and use it in GitHub Desktop.
comment version of avx2 log
/*
AVX implementation of sin, cos, sincos, exp and log
Based on "sse_mathfun.h", by Julien Pommier
http://gruntthepeon.free.fr/ssemath/
Copyright (C) 2012 Giovanni Garberoglio
Interdisciplinary Laboratory for Computational Science (LISC)
Fondazione Bruno Kessler and University of Trento
via Sommarive, 18
I-38123 Trento (Italy)
This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
(this is the zlib license)
*/
#include <immintrin.h>
/* yes I know, the top of this file is quite ugly */
# define ALIGN32_BEG
# define ALIGN32_END __attribute__((aligned(32)))
/* __m128 is ugly to write */
typedef __m256 v8sf; // vector of 8 float (avx)
typedef __m256i v8si; // vector of 8 int (avx)
typedef __m128i v4si; // vector of 8 int (avx)
#define _PI32AVX_CONST(Name, Val) \
static const ALIGN32_BEG int _pi32avx_##Name[4] ALIGN32_END = { Val, Val, Val, Val }
_PI32AVX_CONST(1, 1);
_PI32AVX_CONST(inv1, ~1);
_PI32AVX_CONST(2, 2);
_PI32AVX_CONST(4, 4);
/* declare some AVX constants -- why can't I figure a better way to do that? */
#define _PS256_CONST(Name, Val) \
static const ALIGN32_BEG float _ps256_##Name[8] ALIGN32_END = { Val, Val, Val, Val, Val, Val, Val, Val }
#define _PI32_CONST256(Name, Val) \
static const ALIGN32_BEG int _pi32_256_##Name[8] ALIGN32_END = { Val, Val, Val, Val, Val, Val, Val, Val }
#define _PS256_CONST_TYPE(Name, Type, Val) \
static const ALIGN32_BEG Type _ps256_##Name[8] ALIGN32_END = { Val, Val, Val, Val, Val, Val, Val, Val }
_PS256_CONST(1 , 1.0f);
_PS256_CONST(0p5, 0.5f);
/* the smallest non denormalized float number */
_PS256_CONST_TYPE(min_norm_pos, int, 0x00800000);
_PS256_CONST_TYPE(mant_mask, int, 0x7f800000);
_PS256_CONST_TYPE(inv_mant_mask, int, ~0x7f800000);
_PS256_CONST_TYPE(sign_mask, int, (int)0x80000000);
_PS256_CONST_TYPE(inv_sign_mask, int, ~0x80000000);
_PI32_CONST256(0, 0);
_PI32_CONST256(1, 1);
_PI32_CONST256(inv1, ~1);
_PI32_CONST256(2, 2);
_PI32_CONST256(4, 4);
_PI32_CONST256(0x7f, 0x7f);
_PS256_CONST(cephes_SQRTHF, 0.707106781186547524);
_PS256_CONST(cephes_log_p0, 7.0376836292E-2);
_PS256_CONST(cephes_log_p1, - 1.1514610310E-1);
_PS256_CONST(cephes_log_p2, 1.1676998740E-1);
_PS256_CONST(cephes_log_p3, - 1.2420140846E-1);
_PS256_CONST(cephes_log_p4, + 1.4249322787E-1);
_PS256_CONST(cephes_log_p5, - 1.6668057665E-1);
_PS256_CONST(cephes_log_p6, + 2.0000714765E-1);
_PS256_CONST(cephes_log_p7, - 2.4999993993E-1);
_PS256_CONST(cephes_log_p8, + 3.3333331174E-1);
_PS256_CONST(cephes_log_q1, -2.12194440e-4);
_PS256_CONST(cephes_log_q2, 0.693359375);
#ifndef __AVX2__
typedef union imm_xmm_union {
v8si imm;
v4si xmm[2];
} imm_xmm_union;
#define COPY_IMM_TO_XMM(imm_, xmm0_, xmm1_) { \
imm_xmm_union u __attribute__((aligned(32))); \
u.imm = imm_; \
xmm0_ = u.xmm[0]; \
xmm1_ = u.xmm[1]; \
}
#define COPY_XMM_TO_IMM(xmm0_, xmm1_, imm_) { \
imm_xmm_union u __attribute__((aligned(32))); \
u.xmm[0]=xmm0_; u.xmm[1]=xmm1_; imm_ = u.imm; \
}
#define AVX2_BITOP_USING_SSE2(fn) \
static inline v8si avx2_mm256_##fn(v8si x, int a) \
{ \
/* use SSE2 instruction to perform the bitop AVX2 */ \
v4si x1, x2; \
v8si ret; \
COPY_IMM_TO_XMM(x, x1, x2); \
x1 = _mm_##fn(x1,a); \
x2 = _mm_##fn(x2,a); \
COPY_XMM_TO_IMM(x1, x2, ret); \
return(ret); \
}
//#warning "Using SSE2 to perform AVX2 bitshift ops"
AVX2_BITOP_USING_SSE2(slli_epi32)
AVX2_BITOP_USING_SSE2(srli_epi32)
#define AVX2_INTOP_USING_SSE2(fn) \
static inline v8si avx2_mm256_##fn(v8si x, v8si y) \
{ \
/* use SSE2 instructions to perform the AVX2 integer operation */ \
v4si x1, x2; \
v4si y1, y2; \
v8si ret; \
COPY_IMM_TO_XMM(x, x1, x2); \
COPY_IMM_TO_XMM(y, y1, y2); \
x1 = _mm_##fn(x1,y1); \
x2 = _mm_##fn(x2,y2); \
COPY_XMM_TO_IMM(x1, x2, ret); \
return(ret); \
}
//#warning "Using SSE2 to perform AVX2 integer ops"
AVX2_INTOP_USING_SSE2(and_si128)
AVX2_INTOP_USING_SSE2(andnot_si128)
AVX2_INTOP_USING_SSE2(cmpeq_epi32)
AVX2_INTOP_USING_SSE2(sub_epi32)
AVX2_INTOP_USING_SSE2(add_epi32)
#define avx2_mm256_and_si256 avx2_mm256_and_si128
#define avx2_mm256_andnot_si256 avx2_mm256_andnot_si128
#else
#define avx2_mm256_slli_epi32 _mm256_slli_epi32
#define avx2_mm256_srli_epi32 _mm256_srli_epi32
#define avx2_mm256_and_si256 _mm256_and_si256
#define avx2_mm256_andnot_si256 _mm256_andnot_si256
#define avx2_mm256_cmpeq_epi32 _mm256_cmpeq_epi32
#define avx2_mm256_sub_epi32 _mm256_sub_epi32
#define avx2_mm256_add_epi32 _mm256_add_epi32
#endif /* __AVX2__ */
/* natural logarithm computed for 8 simultaneous float
return NaN for x <= 0
*/
v8sf log256_ps(v8sf x) {
v8si imm0;
v8sf one = *(v8sf*)_ps256_1;
//v8sf invalid_mask = _mm256_cmple_ps(x, _mm256_setzero_ps());
v8sf invalid_mask = _mm256_cmp_ps(x, _mm256_setzero_ps(), _CMP_LE_OS);
//set the min number to the smallest non-denormailed number
x = _mm256_max_ps(x, *(v8sf*)_ps256_min_norm_pos); /* cut off denormalized stuff */
// can be done with AVX2
//This intrinsic shifts each 32-bit integer in the result to the right by 23 bits.
// The shift operation effectively divides the integers by 2^23 and discards the fractional part.
// imm0 only left the exponent parts
imm0 = avx2_mm256_srli_epi32(_mm256_castps_si256(x), 23);
/*
* Extraction of Exponents and Mantissas: The function separates
* each floating-point value x into its exponent
* and mantissa parts using bit manipulation operations.
*/
/* keep only the fractional part */
//set mantissa (the fractional part) to zero
x = _mm256_and_ps(x, *(v8sf*)_ps256_inv_mant_mask);
//set mantissa part to 0.5
x = _mm256_or_ps(x, *(v8sf*)_ps256_0p5);
// this is again another AVX2 instruction
//exponent = exponent - 127
imm0 = avx2_mm256_sub_epi32(imm0, *(v8si*)_pi32_256_0x7f);
//convert imm0 to float e,so the float number is only the exp part in digits
v8sf e = _mm256_cvtepi32_ps(imm0);
//add one to e
e = _mm256_add_ps(e, one);
/* part2:
if( x < SQRTHF ) {
e -= 1;
x = x + x - 1.0;
} else { x = x - 1.0; }
*/
//v8sf mask = _mm256_cmplt_ps(x, *(v8sf*)_ps256_cephes_SQRTHF);
v8sf mask = _mm256_cmp_ps(x, *(v8sf*)_ps256_cephes_SQRTHF, _CMP_LT_OS);
//numbers less than SQRTHF
v8sf tmp = _mm256_and_ps(x, mask);
//x=x+1
x = _mm256_sub_ps(x, one);
//e=e-1 if(x<SQRTHF)
e = _mm256_sub_ps(e, _mm256_and_ps(one, mask));
//x=x+x if(x<SQRTHF)
x = _mm256_add_ps(x, tmp);
//z=x*x
v8sf z = _mm256_mul_ps(x,x);
v8sf y = *(v8sf*)_ps256_cephes_log_p0;
/*
* This is a common technique called Horner's method for efficient evaluation of polynomials.
* The resulting y is the polynomial approximation of the natural logarithm of x.
* This approximation is faster to compute than the exact logarithm and is accurate enough for many purposes.
* P(x) = p0 + p1x + p2x² + p3x³ + p4x⁴ + p5x⁵ + p6x⁶ + p7x⁷ + p8x⁸
*/
y = _mm256_mul_ps(y, x);
y = _mm256_add_ps(y, *(v8sf*)_ps256_cephes_log_p1);
y = _mm256_mul_ps(y, x);
y = _mm256_add_ps(y, *(v8sf*)_ps256_cephes_log_p2);
y = _mm256_mul_ps(y, x);
y = _mm256_add_ps(y, *(v8sf*)_ps256_cephes_log_p3);
y = _mm256_mul_ps(y, x);
y = _mm256_add_ps(y, *(v8sf*)_ps256_cephes_log_p4);
y = _mm256_mul_ps(y, x);
y = _mm256_add_ps(y, *(v8sf*)_ps256_cephes_log_p5);
y = _mm256_mul_ps(y, x);
y = _mm256_add_ps(y, *(v8sf*)_ps256_cephes_log_p6);
y = _mm256_mul_ps(y, x);
y = _mm256_add_ps(y, *(v8sf*)_ps256_cephes_log_p7);
y = _mm256_mul_ps(y, x);
y = _mm256_add_ps(y, *(v8sf*)_ps256_cephes_log_p8);
y = _mm256_mul_ps(y, x);
y = _mm256_mul_ps(y, z);
tmp = _mm256_mul_ps(e, *(v8sf*)_ps256_cephes_log_q1);
y = _mm256_add_ps(y, tmp);
tmp = _mm256_mul_ps(z, *(v8sf*)_ps256_0p5);
y = _mm256_sub_ps(y, tmp);
tmp = _mm256_mul_ps(e, *(v8sf*)_ps256_cephes_log_q2);
x = _mm256_add_ps(x, y);
x = _mm256_add_ps(x, tmp);
x = _mm256_or_ps(x, invalid_mask); // negative arg will be NAN
return x;
}
_PS256_CONST(exp_hi, 88.3762626647949f);
_PS256_CONST(exp_lo, -88.3762626647949f);
_PS256_CONST(cephes_LOG2EF, 1.44269504088896341);
_PS256_CONST(cephes_exp_C1, 0.693359375);
_PS256_CONST(cephes_exp_C2, -2.12194440e-4);
_PS256_CONST(cephes_exp_p0, 1.9875691500E-4);
_PS256_CONST(cephes_exp_p1, 1.3981999507E-3);
_PS256_CONST(cephes_exp_p2, 8.3334519073E-3);
_PS256_CONST(cephes_exp_p3, 4.1665795894E-2);
_PS256_CONST(cephes_exp_p4, 1.6666665459E-1);
_PS256_CONST(cephes_exp_p5, 5.0000001201E-1);
v8sf exp256_ps(v8sf x) {
v8sf tmp = _mm256_setzero_ps(), fx;
v8si imm0;
v8sf one = *(v8sf*)_ps256_1;
x = _mm256_min_ps(x, *(v8sf*)_ps256_exp_hi);
x = _mm256_max_ps(x, *(v8sf*)_ps256_exp_lo);
/* express exp(x) as exp(g + n*log(2)) */
fx = _mm256_mul_ps(x, *(v8sf*)_ps256_cephes_LOG2EF);
fx = _mm256_add_ps(fx, *(v8sf*)_ps256_0p5);
/* how to perform a floorf with SSE: just below */
//imm0 = _mm256_cvttps_epi32(fx);
//tmp = _mm256_cvtepi32_ps(imm0);
tmp = _mm256_floor_ps(fx);
/* if greater, substract 1 */
//v8sf mask = _mm256_cmpgt_ps(tmp, fx);
v8sf mask = _mm256_cmp_ps(tmp, fx, _CMP_GT_OS);
mask = _mm256_and_ps(mask, one);
fx = _mm256_sub_ps(tmp, mask);
tmp = _mm256_mul_ps(fx, *(v8sf*)_ps256_cephes_exp_C1);
v8sf z = _mm256_mul_ps(fx, *(v8sf*)_ps256_cephes_exp_C2);
x = _mm256_sub_ps(x, tmp);
x = _mm256_sub_ps(x, z);
z = _mm256_mul_ps(x,x);
v8sf y = *(v8sf*)_ps256_cephes_exp_p0;
y = _mm256_mul_ps(y, x);
y = _mm256_add_ps(y, *(v8sf*)_ps256_cephes_exp_p1);
y = _mm256_mul_ps(y, x);
y = _mm256_add_ps(y, *(v8sf*)_ps256_cephes_exp_p2);
y = _mm256_mul_ps(y, x);
y = _mm256_add_ps(y, *(v8sf*)_ps256_cephes_exp_p3);
y = _mm256_mul_ps(y, x);
y = _mm256_add_ps(y, *(v8sf*)_ps256_cephes_exp_p4);
y = _mm256_mul_ps(y, x);
y = _mm256_add_ps(y, *(v8sf*)_ps256_cephes_exp_p5);
y = _mm256_mul_ps(y, z);
y = _mm256_add_ps(y, x);
y = _mm256_add_ps(y, one);
/* build 2^n */
imm0 = _mm256_cvttps_epi32(fx);
// another two AVX2 instructions
imm0 = avx2_mm256_add_epi32(imm0, *(v8si*)_pi32_256_0x7f);
imm0 = avx2_mm256_slli_epi32(imm0, 23);
v8sf pow2n = _mm256_castsi256_ps(imm0);
y = _mm256_mul_ps(y, pow2n);
return y;
}
_PS256_CONST(minus_cephes_DP1, -0.78515625);
_PS256_CONST(minus_cephes_DP2, -2.4187564849853515625e-4);
_PS256_CONST(minus_cephes_DP3, -3.77489497744594108e-8);
_PS256_CONST(sincof_p0, -1.9515295891E-4);
_PS256_CONST(sincof_p1, 8.3321608736E-3);
_PS256_CONST(sincof_p2, -1.6666654611E-1);
_PS256_CONST(coscof_p0, 2.443315711809948E-005);
_PS256_CONST(coscof_p1, -1.388731625493765E-003);
_PS256_CONST(coscof_p2, 4.166664568298827E-002);
_PS256_CONST(cephes_FOPI, 1.27323954473516); // 4 / M_PI
/* evaluation of 8 sines at onces using AVX intrisics
The code is the exact rewriting of the cephes sinf function.
Precision is excellent as long as x < 8192 (I did not bother to
take into account the special handling they have for greater values
-- it does not return garbage for arguments over 8192, though, but
the extra precision is missing).
Note that it is such that sinf((float)M_PI) = 8.74e-8, which is the
surprising but correct result.
*/
v8sf sin256_ps(v8sf x) { // any x
v8sf xmm1, xmm2 = _mm256_setzero_ps(), xmm3, sign_bit, y;
v8si imm0, imm2;
#ifndef __AVX2__
v4si imm0_1, imm0_2;
v4si imm2_1, imm2_2;
#endif
sign_bit = x;
/* take the absolute value */
x = _mm256_and_ps(x, *(v8sf*)_ps256_inv_sign_mask);
/* extract the sign bit (upper one) */
sign_bit = _mm256_and_ps(sign_bit, *(v8sf*)_ps256_sign_mask);
/* scale by 4/Pi */
y = _mm256_mul_ps(x, *(v8sf*)_ps256_cephes_FOPI);
/*
Here we start a series of integer operations, which are in the
realm of AVX2.
If we don't have AVX, let's perform them using SSE2 directives
*/
#ifdef __AVX2__
/* store the integer part of y in mm0 */
imm2 = _mm256_cvttps_epi32(y);
/* j=(j+1) & (~1) (see the cephes sources) */
// another two AVX2 instruction
imm2 = avx2_mm256_add_epi32(imm2, *(v8si*)_pi32_256_1);
imm2 = avx2_mm256_and_si256(imm2, *(v8si*)_pi32_256_inv1);
y = _mm256_cvtepi32_ps(imm2);
/* get the swap sign flag */
imm0 = avx2_mm256_and_si256(imm2, *(v8si*)_pi32_256_4);
imm0 = avx2_mm256_slli_epi32(imm0, 29);
/* get the polynom selection mask
there is one polynom for 0 <= x <= Pi/4
and another one for Pi/4<x<=Pi/2
Both branches will be computed.
*/
imm2 = avx2_mm256_and_si256(imm2, *(v8si*)_pi32_256_2);
imm2 = avx2_mm256_cmpeq_epi32(imm2,*(v8si*)_pi32_256_0);
#else
/* we use SSE2 routines to perform the integer ops */
COPY_IMM_TO_XMM(_mm256_cvttps_epi32(y),imm2_1,imm2_2);
imm2_1 = _mm_add_epi32(imm2_1, *(v4si*)_pi32avx_1);
imm2_2 = _mm_add_epi32(imm2_2, *(v4si*)_pi32avx_1);
imm2_1 = _mm_and_si128(imm2_1, *(v4si*)_pi32avx_inv1);
imm2_2 = _mm_and_si128(imm2_2, *(v4si*)_pi32avx_inv1);
COPY_XMM_TO_IMM(imm2_1,imm2_2,imm2);
y = _mm256_cvtepi32_ps(imm2);
imm0_1 = _mm_and_si128(imm2_1, *(v4si*)_pi32avx_4);
imm0_2 = _mm_and_si128(imm2_2, *(v4si*)_pi32avx_4);
imm0_1 = _mm_slli_epi32(imm0_1, 29);
imm0_2 = _mm_slli_epi32(imm0_2, 29);
COPY_XMM_TO_IMM(imm0_1, imm0_2, imm0);
imm2_1 = _mm_and_si128(imm2_1, *(v4si*)_pi32avx_2);
imm2_2 = _mm_and_si128(imm2_2, *(v4si*)_pi32avx_2);
imm2_1 = _mm_cmpeq_epi32(imm2_1, _mm_setzero_si128());
imm2_2 = _mm_cmpeq_epi32(imm2_2, _mm_setzero_si128());
COPY_XMM_TO_IMM(imm2_1, imm2_2, imm2);
#endif
v8sf swap_sign_bit = _mm256_castsi256_ps(imm0);
v8sf poly_mask = _mm256_castsi256_ps(imm2);
sign_bit = _mm256_xor_ps(sign_bit, swap_sign_bit);
/* The magic pass: "Extended precision modular arithmetic"
x = ((x - y * DP1) - y * DP2) - y * DP3; */
xmm1 = *(v8sf*)_ps256_minus_cephes_DP1;
xmm2 = *(v8sf*)_ps256_minus_cephes_DP2;
xmm3 = *(v8sf*)_ps256_minus_cephes_DP3;
xmm1 = _mm256_mul_ps(y, xmm1);
xmm2 = _mm256_mul_ps(y, xmm2);
xmm3 = _mm256_mul_ps(y, xmm3);
x = _mm256_add_ps(x, xmm1);
x = _mm256_add_ps(x, xmm2);
x = _mm256_add_ps(x, xmm3);
/* Evaluate the first polynom (0 <= x <= Pi/4) */
y = *(v8sf*)_ps256_coscof_p0;
v8sf z = _mm256_mul_ps(x,x);
y = _mm256_mul_ps(y, z);
y = _mm256_add_ps(y, *(v8sf*)_ps256_coscof_p1);
y = _mm256_mul_ps(y, z);
y = _mm256_add_ps(y, *(v8sf*)_ps256_coscof_p2);
y = _mm256_mul_ps(y, z);
y = _mm256_mul_ps(y, z);
v8sf tmp = _mm256_mul_ps(z, *(v8sf*)_ps256_0p5);
y = _mm256_sub_ps(y, tmp);
y = _mm256_add_ps(y, *(v8sf*)_ps256_1);
/* Evaluate the second polynom (Pi/4 <= x <= 0) */
v8sf y2 = *(v8sf*)_ps256_sincof_p0;
y2 = _mm256_mul_ps(y2, z);
y2 = _mm256_add_ps(y2, *(v8sf*)_ps256_sincof_p1);
y2 = _mm256_mul_ps(y2, z);
y2 = _mm256_add_ps(y2, *(v8sf*)_ps256_sincof_p2);
y2 = _mm256_mul_ps(y2, z);
y2 = _mm256_mul_ps(y2, x);
y2 = _mm256_add_ps(y2, x);
/* select the correct result from the two polynoms */
xmm3 = poly_mask;
y2 = _mm256_and_ps(xmm3, y2); //, xmm3);
y = _mm256_andnot_ps(xmm3, y);
y = _mm256_add_ps(y,y2);
/* update the sign */
y = _mm256_xor_ps(y, sign_bit);
return y;
}
/* almost the same as sin_ps */
v8sf cos256_ps(v8sf x) { // any x
v8sf xmm1, xmm2 = _mm256_setzero_ps(), xmm3, y;
v8si imm0, imm2;
#ifndef __AVX2__
v4si imm0_1, imm0_2;
v4si imm2_1, imm2_2;
#endif
/* take the absolute value */
x = _mm256_and_ps(x, *(v8sf*)_ps256_inv_sign_mask);
/* scale by 4/Pi */
y = _mm256_mul_ps(x, *(v8sf*)_ps256_cephes_FOPI);
#ifdef __AVX2__
/* store the integer part of y in mm0 */
imm2 = _mm256_cvttps_epi32(y);
/* j=(j+1) & (~1) (see the cephes sources) */
imm2 = avx2_mm256_add_epi32(imm2, *(v8si*)_pi32_256_1);
imm2 = avx2_mm256_and_si256(imm2, *(v8si*)_pi32_256_inv1);
y = _mm256_cvtepi32_ps(imm2);
imm2 = avx2_mm256_sub_epi32(imm2, *(v8si*)_pi32_256_2);
/* get the swap sign flag */
imm0 = avx2_mm256_andnot_si256(imm2, *(v8si*)_pi32_256_4);
imm0 = avx2_mm256_slli_epi32(imm0, 29);
/* get the polynom selection mask */
imm2 = avx2_mm256_and_si256(imm2, *(v8si*)_pi32_256_2);
imm2 = avx2_mm256_cmpeq_epi32(imm2, *(v8si*)_pi32_256_0);
#else
/* we use SSE2 routines to perform the integer ops */
COPY_IMM_TO_XMM(_mm256_cvttps_epi32(y),imm2_1,imm2_2);
imm2_1 = _mm_add_epi32(imm2_1, *(v4si*)_pi32avx_1);
imm2_2 = _mm_add_epi32(imm2_2, *(v4si*)_pi32avx_1);
imm2_1 = _mm_and_si128(imm2_1, *(v4si*)_pi32avx_inv1);
imm2_2 = _mm_and_si128(imm2_2, *(v4si*)_pi32avx_inv1);
COPY_XMM_TO_IMM(imm2_1,imm2_2,imm2);
y = _mm256_cvtepi32_ps(imm2);
imm2_1 = _mm_sub_epi32(imm2_1, *(v4si*)_pi32avx_2);
imm2_2 = _mm_sub_epi32(imm2_2, *(v4si*)_pi32avx_2);
imm0_1 = _mm_andnot_si128(imm2_1, *(v4si*)_pi32avx_4);
imm0_2 = _mm_andnot_si128(imm2_2, *(v4si*)_pi32avx_4);
imm0_1 = _mm_slli_epi32(imm0_1, 29);
imm0_2 = _mm_slli_epi32(imm0_2, 29);
COPY_XMM_TO_IMM(imm0_1, imm0_2, imm0);
imm2_1 = _mm_and_si128(imm2_1, *(v4si*)_pi32avx_2);
imm2_2 = _mm_and_si128(imm2_2, *(v4si*)_pi32avx_2);
imm2_1 = _mm_cmpeq_epi32(imm2_1, _mm_setzero_si128());
imm2_2 = _mm_cmpeq_epi32(imm2_2, _mm_setzero_si128());
COPY_XMM_TO_IMM(imm2_1, imm2_2, imm2);
#endif
v8sf sign_bit = _mm256_castsi256_ps(imm0);
v8sf poly_mask = _mm256_castsi256_ps(imm2);
/* The magic pass: "Extended precision modular arithmetic"
x = ((x - y * DP1) - y * DP2) - y * DP3; */
xmm1 = *(v8sf*)_ps256_minus_cephes_DP1;
xmm2 = *(v8sf*)_ps256_minus_cephes_DP2;
xmm3 = *(v8sf*)_ps256_minus_cephes_DP3;
xmm1 = _mm256_mul_ps(y, xmm1);
xmm2 = _mm256_mul_ps(y, xmm2);
xmm3 = _mm256_mul_ps(y, xmm3);
x = _mm256_add_ps(x, xmm1);
x = _mm256_add_ps(x, xmm2);
x = _mm256_add_ps(x, xmm3);
/* Evaluate the first polynom (0 <= x <= Pi/4) */
y = *(v8sf*)_ps256_coscof_p0;
v8sf z = _mm256_mul_ps(x,x);
y = _mm256_mul_ps(y, z);
y = _mm256_add_ps(y, *(v8sf*)_ps256_coscof_p1);
y = _mm256_mul_ps(y, z);
y = _mm256_add_ps(y, *(v8sf*)_ps256_coscof_p2);
y = _mm256_mul_ps(y, z);
y = _mm256_mul_ps(y, z);
v8sf tmp = _mm256_mul_ps(z, *(v8sf*)_ps256_0p5);
y = _mm256_sub_ps(y, tmp);
y = _mm256_add_ps(y, *(v8sf*)_ps256_1);
/* Evaluate the second polynom (Pi/4 <= x <= 0) */
v8sf y2 = *(v8sf*)_ps256_sincof_p0;
y2 = _mm256_mul_ps(y2, z);
y2 = _mm256_add_ps(y2, *(v8sf*)_ps256_sincof_p1);
y2 = _mm256_mul_ps(y2, z);
y2 = _mm256_add_ps(y2, *(v8sf*)_ps256_sincof_p2);
y2 = _mm256_mul_ps(y2, z);
y2 = _mm256_mul_ps(y2, x);
y2 = _mm256_add_ps(y2, x);
/* select the correct result from the two polynoms */
xmm3 = poly_mask;
y2 = _mm256_and_ps(xmm3, y2); //, xmm3);
y = _mm256_andnot_ps(xmm3, y);
y = _mm256_add_ps(y,y2);
/* update the sign */
y = _mm256_xor_ps(y, sign_bit);
return y;
}
/* since sin256_ps and cos256_ps are almost identical, sincos256_ps could replace both of them..
it is almost as fast, and gives you a free cosine with your sine */
void sincos256_ps(v8sf x, v8sf *s, v8sf *c) {
v8sf xmm1, xmm2, xmm3 = _mm256_setzero_ps(), sign_bit_sin, y;
v8si imm0, imm2, imm4;
#ifndef __AVX2__
v4si imm0_1, imm0_2;
v4si imm2_1, imm2_2;
v4si imm4_1, imm4_2;
#endif
sign_bit_sin = x;
/* take the absolute value */
x = _mm256_and_ps(x, *(v8sf*)_ps256_inv_sign_mask);
/* extract the sign bit (upper one) */
sign_bit_sin = _mm256_and_ps(sign_bit_sin, *(v8sf*)_ps256_sign_mask);
/* scale by 4/Pi */
y = _mm256_mul_ps(x, *(v8sf*)_ps256_cephes_FOPI);
#ifdef __AVX2__
/* store the integer part of y in imm2 */
imm2 = _mm256_cvttps_epi32(y);
/* j=(j+1) & (~1) (see the cephes sources) */
imm2 = avx2_mm256_add_epi32(imm2, *(v8si*)_pi32_256_1);
imm2 = avx2_mm256_and_si256(imm2, *(v8si*)_pi32_256_inv1);
y = _mm256_cvtepi32_ps(imm2);
imm4 = imm2;
/* get the swap sign flag for the sine */
imm0 = avx2_mm256_and_si256(imm2, *(v8si*)_pi32_256_4);
imm0 = avx2_mm256_slli_epi32(imm0, 29);
//v8sf swap_sign_bit_sin = _mm256_castsi256_ps(imm0);
/* get the polynom selection mask for the sine*/
imm2 = avx2_mm256_and_si256(imm2, *(v8si*)_pi32_256_2);
imm2 = avx2_mm256_cmpeq_epi32(imm2, *(v8si*)_pi32_256_0);
//v8sf poly_mask = _mm256_castsi256_ps(imm2);
#else
/* we use SSE2 routines to perform the integer ops */
COPY_IMM_TO_XMM(_mm256_cvttps_epi32(y),imm2_1,imm2_2);
imm2_1 = _mm_add_epi32(imm2_1, *(v4si*)_pi32avx_1);
imm2_2 = _mm_add_epi32(imm2_2, *(v4si*)_pi32avx_1);
imm2_1 = _mm_and_si128(imm2_1, *(v4si*)_pi32avx_inv1);
imm2_2 = _mm_and_si128(imm2_2, *(v4si*)_pi32avx_inv1);
COPY_XMM_TO_IMM(imm2_1,imm2_2,imm2);
y = _mm256_cvtepi32_ps(imm2);
imm4_1 = imm2_1;
imm4_2 = imm2_2;
imm0_1 = _mm_and_si128(imm2_1, *(v4si*)_pi32avx_4);
imm0_2 = _mm_and_si128(imm2_2, *(v4si*)_pi32avx_4);
imm0_1 = _mm_slli_epi32(imm0_1, 29);
imm0_2 = _mm_slli_epi32(imm0_2, 29);
COPY_XMM_TO_IMM(imm0_1, imm0_2, imm0);
imm2_1 = _mm_and_si128(imm2_1, *(v4si*)_pi32avx_2);
imm2_2 = _mm_and_si128(imm2_2, *(v4si*)_pi32avx_2);
imm2_1 = _mm_cmpeq_epi32(imm2_1, _mm_setzero_si128());
imm2_2 = _mm_cmpeq_epi32(imm2_2, _mm_setzero_si128());
COPY_XMM_TO_IMM(imm2_1, imm2_2, imm2);
#endif
v8sf swap_sign_bit_sin = _mm256_castsi256_ps(imm0);
v8sf poly_mask = _mm256_castsi256_ps(imm2);
/* The magic pass: "Extended precision modular arithmetic"
x = ((x - y * DP1) - y * DP2) - y * DP3; */
xmm1 = *(v8sf*)_ps256_minus_cephes_DP1;
xmm2 = *(v8sf*)_ps256_minus_cephes_DP2;
xmm3 = *(v8sf*)_ps256_minus_cephes_DP3;
xmm1 = _mm256_mul_ps(y, xmm1);
xmm2 = _mm256_mul_ps(y, xmm2);
xmm3 = _mm256_mul_ps(y, xmm3);
x = _mm256_add_ps(x, xmm1);
x = _mm256_add_ps(x, xmm2);
x = _mm256_add_ps(x, xmm3);
#ifdef __AVX2__
imm4 = avx2_mm256_sub_epi32(imm4, *(v8si*)_pi32_256_2);
imm4 = avx2_mm256_andnot_si256(imm4, *(v8si*)_pi32_256_4);
imm4 = avx2_mm256_slli_epi32(imm4, 29);
#else
imm4_1 = _mm_sub_epi32(imm4_1, *(v4si*)_pi32avx_2);
imm4_2 = _mm_sub_epi32(imm4_2, *(v4si*)_pi32avx_2);
imm4_1 = _mm_andnot_si128(imm4_1, *(v4si*)_pi32avx_4);
imm4_2 = _mm_andnot_si128(imm4_2, *(v4si*)_pi32avx_4);
imm4_1 = _mm_slli_epi32(imm4_1, 29);
imm4_2 = _mm_slli_epi32(imm4_2, 29);
COPY_XMM_TO_IMM(imm4_1, imm4_2, imm4);
#endif
v8sf sign_bit_cos = _mm256_castsi256_ps(imm4);
sign_bit_sin = _mm256_xor_ps(sign_bit_sin, swap_sign_bit_sin);
/* Evaluate the first polynom (0 <= x <= Pi/4) */
v8sf z = _mm256_mul_ps(x,x);
y = *(v8sf*)_ps256_coscof_p0;
y = _mm256_mul_ps(y, z);
y = _mm256_add_ps(y, *(v8sf*)_ps256_coscof_p1);
y = _mm256_mul_ps(y, z);
y = _mm256_add_ps(y, *(v8sf*)_ps256_coscof_p2);
y = _mm256_mul_ps(y, z);
y = _mm256_mul_ps(y, z);
v8sf tmp = _mm256_mul_ps(z, *(v8sf*)_ps256_0p5);
y = _mm256_sub_ps(y, tmp);
y = _mm256_add_ps(y, *(v8sf*)_ps256_1);
/* Evaluate the second polynom (Pi/4 <= x <= 0) */
v8sf y2 = *(v8sf*)_ps256_sincof_p0;
y2 = _mm256_mul_ps(y2, z);
y2 = _mm256_add_ps(y2, *(v8sf*)_ps256_sincof_p1);
y2 = _mm256_mul_ps(y2, z);
y2 = _mm256_add_ps(y2, *(v8sf*)_ps256_sincof_p2);
y2 = _mm256_mul_ps(y2, z);
y2 = _mm256_mul_ps(y2, x);
y2 = _mm256_add_ps(y2, x);
/* select the correct result from the two polynoms */
xmm3 = poly_mask;
v8sf ysin2 = _mm256_and_ps(xmm3, y2);
v8sf ysin1 = _mm256_andnot_ps(xmm3, y);
y2 = _mm256_sub_ps(y2,ysin2);
y = _mm256_sub_ps(y, ysin1);
xmm1 = _mm256_add_ps(ysin1,ysin2);
xmm2 = _mm256_add_ps(y,y2);
/* update the sign */
*s = _mm256_xor_ps(xmm1, sign_bit_sin);
*c = _mm256_xor_ps(xmm2, sign_bit_cos);
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment