Created
December 7, 2009 19:50
-
-
Save burke/251060 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| require 'inline' | |
| class MyMath | |
| # Thanks, Bruce Schneier! | |
| inline do |builder| | |
| builder.c <<-EOS | |
| unsigned long expmod(unsigned long base, unsigned long exponent, unsigned long modulus) { | |
| unsigned long result = 1; | |
| while(exponent > 0) { | |
| if ((exponent & 1) == 1) { | |
| result = (result * base) % modulus; | |
| } | |
| exponent >>= 1; | |
| base = (base * base) % modulus; | |
| } | |
| return result; | |
| } | |
| EOS | |
| end | |
| end | |
| class Fixnum | |
| def prime? # miller-rabin test | |
| n = self | |
| math = MyMath.new | |
| return false if n < 2 | |
| return true if n < 4 | |
| if n < 1_373_653 | |
| primes = [2, 3] | |
| elsif n < 9_080_191 | |
| primes = [31, 73] | |
| elsif n < 4_759_123_141 | |
| primes = [2, 7, 61] | |
| elsif n < 2_152_302_989_747 | |
| primes = [2, 3, 5, 7, 11] | |
| elsif n < 3_474_749_660_383 | |
| primes = [2, 3, 5, 7, 11, 13] | |
| elsif n < 341_550_071_728_321 | |
| primes = [2, 3, 5, 7, 11, 13, 17] | |
| else | |
| raise ArgumentError, "Use a different primality test." | |
| end | |
| k = 0 | |
| m = n - 1 | |
| while m.even? | |
| m /= 2 | |
| k += 1 | |
| end | |
| primes.each do |a| | |
| b = math.expmod(a, m, n) # (a**m)%n | |
| next if b==1 | |
| prime = false | |
| k.times do | |
| if b == n - 1 | |
| prime = true | |
| break | |
| end | |
| b = math.expmod(b, 2, n) # (b*b)%n | |
| end | |
| return false unless prime | |
| end | |
| return true | |
| end | |
| end |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment