Created
May 5, 2020 20:24
-
-
Save burrussmp/36b355f4d5c71abba77f87043e2e955e to your computer and use it in GitHub Desktop.
Define and load UNet into the GPU
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
class DoubleConv2D(nn.Module): | |
"""(convolution => [BN] => ReLU) * 2""" | |
def __init__(self, in_channels, out_channels): | |
super().__init__() | |
self.double_conv = nn.Sequential( | |
nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1), | |
nn.BatchNorm2d(out_channels), | |
nn.ReLU(inplace=True), | |
nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1), | |
nn.BatchNorm2d(out_channels), | |
nn.ReLU(inplace=True) | |
) | |
def forward(self, x): | |
return self.double_conv(x) | |
class Down(nn.Module): | |
"""Downscaling with maxpool then double conv""" | |
def __init__(self, in_channels, out_channels): | |
super().__init__() | |
self.maxpool_conv = nn.Sequential( | |
nn.MaxPool2d(2), | |
DoubleConv2D(in_channels, out_channels) | |
) | |
def forward(self, x): | |
return self.maxpool_conv(x) | |
class Up(nn.Module): | |
"""Upscaling then double conv""" | |
def __init__(self, in_channels, out_channels, bilinear=True): | |
super().__init__() | |
if bilinear: | |
self.up = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True) | |
else: | |
self.up = nn.ConvTranspose2d(in_channels // 2, in_channels // 2, kernel_size=2, stride=2) | |
self.conv = DoubleConv2D(in_channels, out_channels) | |
def forward(self, x1, x2): | |
x1 = self.up(x1) | |
# input is CHW | |
diffY = torch.tensor([x2.size()[2] - x1.size()[2]]) | |
diffX = torch.tensor([x2.size()[3] - x1.size()[3]]) | |
x1 = F.pad(x1, [diffX // 2, diffX - diffX // 2, | |
diffY // 2, diffY - diffY // 2]) | |
x = torch.cat([x2, x1], dim=1) | |
return self.conv(x) | |
class OutConv(nn.Module): | |
def __init__(self, in_channels, out_channels): | |
super(OutConv, self).__init__() | |
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=1) | |
def forward(self, x): | |
return self.conv(x) | |
class UNet2D(nn.Module): | |
def __init__(self, n_channels=1, n_classes=27, bilinear=True): | |
super(UNet2D, self).__init__() | |
self.n_channels = n_channels | |
self.n_classes = n_classes | |
self.bilinear = bilinear | |
self.inc = DoubleConv2D(n_channels, 64) | |
self.down1 = Down(64, 128) | |
self.down2 = Down(128, 256) | |
self.down3 = Down(256, 512) | |
self.down4 = Down(512, 512) | |
self.up1 = Up(1024, 256, bilinear) | |
self.up2 = Up(512, 128, bilinear) | |
self.up3 = Up(256, 64, bilinear) | |
self.up4 = Up(128, 64, bilinear) | |
self.outc = OutConv(64, n_classes) | |
self.final = nn.Sigmoid() | |
def forward(self, x): | |
x1 = self.inc(x) | |
x2 = self.down1(x1) | |
x3 = self.down2(x2) | |
x4 = self.down3(x3) | |
x5 = self.down4(x4) | |
x = self.up1(x5, x4) | |
x = self.up2(x, x3) | |
x = self.up3(x, x2) | |
x = self.up4(x, x1) | |
x = self.outc(x) | |
logits = self.final(x) | |
return logits | |
use_cuda = torch.cuda.is_available() | |
model = UNet2D() | |
if (use_cuda): | |
model.cuda() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment