git clone [email protected]:YOUR-USERNAME/YOUR-FORKED-REPO.git
cd into/cloned/fork-repo
git remote add upstream git://github.com/ORIGINAL-DEV-USERNAME/REPO-YOU-FORKED-FROM.git
git fetch upstream
git clone [email protected]:YOUR-USERNAME/YOUR-FORKED-REPO.git
cd into/cloned/fork-repo
git remote add upstream git://github.com/ORIGINAL-DEV-USERNAME/REPO-YOU-FORKED-FROM.git
git fetch upstream
| 😄 | 😆 | 😊 | 😃 |
😩 | 😔 | 😞 | 😖 | 😨 | 😰 | 😣 | 😢 | 😭 | 😂 | 😲 | 😱 | | 😫 | 😠 | 😡 | 😤 | 😪 | 😋 | 😷
😎 | 😵 | 👿 | 😈 | 😐 | 😶 | 😇 | 👽 | 💛 | 💙 | 💜 | ❤️ | 💚 | 💔 | 💓 | 💗 | 💕 | 💞 | 💘 | ✨
#ARCH | |
ARCH="`uname -s`" | |
LINUX="Linux" | |
Darwin="Darwin" | |
TARGET=demo.hex | |
EXECUTABLE=demo.elf | |
CC=arm-none-eabi-gcc |
// | |
// _oo0oo_ | |
// o8888888o | |
// 88" . "88 | |
// (| -_- |) | |
// 0\ = /0 | |
// ___/`---'\___ | |
// .' \\| |// '. | |
// / \\||| : |||// \ | |
// / _||||| -:- |||||- \ |
from matplotlib import pyplot as plt | |
import cv2 | |
img = cv2.imread('/Users/mustafa/test.jpg') | |
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) | |
plt.imshow(gray) | |
plt.title('my picture') | |
plt.show() |
厂商 | Bootloader 解锁 |
内核 | AOSP | Treble | |||
---|---|---|---|---|---|---|---|
The Gilbert–Johnson–Keerthi (GJK) distance algorithm is a method of determining the minimum distance between two convex sets. The algorithm's stability, speed which operates in near-constant time, and small storage footprint make it popular for realtime collision detection.
Unlike many other distance algorithms, it has no requirments on geometry data to be stored in any specific format, but instead relies solely on a support function to iteratively generate closer simplices to the correct answer using the Minkowski sum (CSO) of two convex shapes.