Last active
December 23, 2018 12:54
-
-
Save buttercutter/186438ad7d2e6c1ec15d9ce5d8435c13 to your computer and use it in GitHub Desktop.
Python inference code for pruned SqueezeNet model
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#Modified from https://github.com/amrit-das/Custom-Model-Training-PyTorch/blob/master/predict.py | |
import torch | |
import torch.nn as nn | |
#from torchvision.models import resnet18 | |
from torchvision.transforms import transforms | |
import matplotlib.pyplot as plt | |
import numpy as np | |
from torch.autograd import Variable | |
import torch.functional as F | |
from PIL import Image | |
import os | |
import sys | |
import argparse | |
from prune import * | |
from finetune import * | |
parser = argparse.ArgumentParser(description = 'To Predict from a trained model') | |
parser.add_argument('-i','--image', dest = 'image_name', required = True, help='Path to the image file') | |
parser.add_argument('-m','--model', dest = 'model_name', required = True, help='Path to the model') | |
parser.add_argument('-n','--num_class',dest = 'num_classes', required = True, help='Number of training classes') | |
args = parser.parse_args() | |
#model=ModifiedSqueezeNetModel().cuda() | |
#model = torch.load(args.model_name).cuda() | |
#model = resnet18(num_classes = int(args.num_classes)) | |
path_to_model = "./"+args.model_name | |
#checkpoint = torch.load(path_to_model) | |
model = torch.load(path_to_model) | |
#model.load_state_dict(checkpoint) | |
#model.eval() | |
def predict_image(image_path): | |
print("prediction in progress") | |
image = Image.open(image_path) | |
transformation = transforms.Compose([ | |
transforms.RandomResizedCrop(224), | |
transforms.RandomHorizontalFlip(), | |
transforms.ToTensor(), | |
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) | |
]) | |
image_tensor = transformation(image).float() | |
image_tensor = image_tensor.unsqueeze_(0) | |
if torch.cuda.is_available(): | |
image_tensor.cuda() | |
input = Variable(image_tensor).cuda() | |
output = model(input) | |
#index = output.argmax() | |
#print("output = ", output) | |
max_value, max_index = torch.max(output,1) | |
return max_index.item() | |
def class_mapping(index): | |
mapping=open('class_mapping.txt','r') | |
class_map={} | |
for line in mapping: | |
l=line.strip('\n').split('=') | |
class_map[l[1]]=l[0] | |
#print("l[0] = ", l[0]) | |
#print("l[1] = ", l[1]) | |
#print("class_map[0] = ", class_map[str(0)]) | |
#print("class_map[1] = ", class_map[str(1)]) | |
return class_map[str(index)] | |
if __name__ == "__main__": | |
imagepath = "./test/Lemon/"+args.image_name | |
prediction = predict_image(imagepath) | |
#print("prediction = ", str(prediction)) | |
name = class_mapping(prediction) | |
print("Predicted Class: ",name) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment