Last active
August 10, 2022 21:09
-
-
Save bveeramani/24d74097821e4be19d1e586ea267302e to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from typing import Dict | |
import pandas as pd | |
import pyarrow | |
import ray | |
import tensorflow as tf | |
from ray.data.block import Block | |
from ray.data.datasource.file_based_datasource import FileBasedDatasource | |
def main(): | |
df = pd.DataFrame({"foo": ["cat", "dog", "elephant"], "bar": [0, 1, 2]}) | |
write_dataframe(df, "foobar.tfrecords") | |
features = { | |
'foo': tf.io.FixedLenFeature([], tf.string), | |
'bar': tf.io.FixedLenFeature([], tf.float32) | |
} | |
dataset = ray.data.read_datasource(TFRecordsDatasource(), paths=["foobar.tfrecords"], features=features) | |
print(dataset) | |
print(dataset.take()) | |
def write_dataframe(df: pd.DataFrame, path: str) -> None: | |
"""Write a Pandas DataFrame to a `tfrecords` file.""" | |
examples = [] | |
for _, row in df.iterrows(): | |
features = tf.train.Features(feature={ | |
"foo": tf.train.Feature(bytes_list=tf.train.BytesList(value=[bytes(row["foo"], "utf-8")])), | |
"bar": tf.train.Feature(float_list=tf.train.FloatList(value=[row["bar"]])) | |
}) | |
example = tf.train.Example(features=features) | |
examples.append(example) | |
with tf.io.TFRecordWriter(path=path) as writer: | |
for example in examples: | |
writer.write(example.SerializeToString()) | |
class TFRecordsDatasource(FileBasedDatasource): | |
_FILE_EXTENSION = "tfrecords" | |
def _read_file( | |
self, f: "pyarrow.NativeFile", path: str, features: Dict[str, tf.io.FixedLenFeature], **reader_args | |
) -> Block: | |
dataset = tf.data.TFRecordDataset([path]) | |
dataset = dataset.map(lambda serialized: tf.io.parse_single_example(serialized, features)) | |
foo = [record["foo"].numpy().decode("utf-8") for record in dataset] | |
bar = [float(record["bar"]) for record in dataset] | |
return pd.DataFrame({"foo": foo, "bar": bar}) | |
if __name__ == "__main__": | |
main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment