Created
September 30, 2022 23:06
-
-
Save bwasti/1c2679f3495bea2c376045d7380b3dae to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# examples of backward passes implemented with fwd functions | |
import torch | |
import torch.nn.functional as F | |
def simple(): | |
print("simple") | |
x = torch.randn(1, 1, 4, 4) | |
x.requires_grad = True | |
w = torch.randn(1, 1, 3, 3) | |
w.requires_grad = True | |
y = torch.conv2d(x, w) | |
y.backward(torch.ones(1, 1, 2, 2)) | |
# print(x.grad) | |
# print(w.grad) | |
grad = torch.ones(1, 1, 2, 2) | |
grad = F.pad(grad, (2, 2, 2, 2)) | |
z = torch.conv2d(grad, w.flip([2, 3])) | |
grad = torch.ones(1, 1, 2, 2) | |
r = torch.conv2d(x, grad) | |
# print(z) | |
# print(r) | |
torch.testing.assert_close(x.grad, z) | |
torch.testing.assert_close(w.grad, r) | |
print("pass") | |
def padded(): | |
print("padded") | |
x = torch.randn(1, 1, 4, 4) | |
x.requires_grad = True | |
w = torch.randn(1, 1, 3, 3) | |
w.requires_grad = True | |
y = torch.conv2d(x, w, padding=1) | |
y.backward(torch.ones(1, 1, 4, 4)) | |
# print(x.grad) | |
# print(w.grad) | |
grad = torch.ones(1, 1, 4, 4) | |
grad = F.pad(grad, (1, 1, 1, 1)) | |
z = torch.conv2d(grad, w.flip([2, 3])) | |
grad = torch.ones(1, 1, 4, 4) | |
r = torch.conv2d(x, grad, padding=1) | |
# print(z) | |
# print(r) | |
torch.testing.assert_close(x.grad, z) | |
torch.testing.assert_close(w.grad, r) | |
print("pass") | |
def strided(): | |
print("strided") | |
x = torch.randn(1, 1, 5, 5) | |
x.requires_grad = True | |
w = torch.randn(1, 1, 3, 3) | |
w.requires_grad = True | |
y = torch.conv2d(x, w, stride=2) | |
y.backward(torch.ones(1, 1, 2, 2)) | |
# print(x.grad) | |
# print(w.grad) | |
grad = torch.ones(1, 1, 2, 2) | |
grad = grad.reshape(1, 1, 2, 2, 1, 1) | |
grad = F.pad(grad, (1, 0, 1, 0)).transpose(3, 4) | |
grad = grad.reshape(1, 1, 4, 4) | |
grad = F.pad(grad, (1, 2, 1, 2)) | |
z = torch.conv2d(grad, w.flip([2, 3])) | |
grad = torch.ones(1, 1, 2, 2) | |
r = torch.conv2d(x, grad, dilation=2) | |
# print(z) | |
# print(r) | |
torch.testing.assert_close(x.grad, z) | |
torch.testing.assert_close(w.grad, r) | |
print("pass") | |
simple() | |
padded() | |
strided() | |
# Strided explanation: | |
# | |
# make this | |
# x x | |
# x x | |
# into this | |
# x, x, x, x | |
# then pad | |
# 0 0 0 0, 0 0, 0 0 | |
# 0 x, 0 x, 0 x, 0 x | |
# then reshape | |
# 0 0 0 0 | |
# 0 x 0 x | |
# 0 0 0 0 | |
# 0 x 0 x | |
# then pad 1, 3 | |
# 0 0 0 0 0 0 0 | |
# 0 0 0 0 0 0 0 | |
# 0 0 x 0 x 0 0 | |
# 0 0 0 0 0 0 0 | |
# 0 0 x 0 x 0 0 | |
# 0 0 0 0 0 0 0 | |
# 0 0 0 0 0 0 0 |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment