|
# Copyright (C) 2013 Brian Wesley Baugh |
|
# CSCE 6933: Social Network Analysis |
|
# Created: January 22, 2013 |
|
# Updated: January 30, 2013 |
|
"""Generate a randomly connected graph with N nodes and E edges.""" |
|
import random |
|
import argparse |
|
from pprint import pprint |
|
|
|
|
|
class Graph(object): |
|
def __init__(self, nodes, edges=None, loops=False, multigraph=False, |
|
digraph=False): |
|
self.nodes = nodes |
|
if edges: |
|
self.edges = edges |
|
self.edge_set = self._compute_edge_set() |
|
else: |
|
self.edges = [] |
|
self.edge_set = set() |
|
self.loops = loops |
|
self.multigraph = multigraph |
|
self.digraph = digraph |
|
|
|
def _compute_edge_set(self): |
|
raise NotImplementedError() |
|
|
|
def add_edge(self, edge): |
|
"""Add the edge if the graph type allows it.""" |
|
if self.multigraph or edge not in self.edge_set: |
|
self.edges.append(edge) |
|
self.edge_set.add(edge) |
|
if not self.digraph: |
|
self.edge_set.add(edge[::-1]) # add other direction to set. |
|
return True |
|
return False |
|
|
|
def make_random_edge(self): |
|
"""Generate a random edge between any two nodes in the graph.""" |
|
if self.loops: |
|
# With replacement. |
|
random_edge = (random.choice(self.nodes), random.choice(self.nodes)) |
|
else: |
|
# Without replacement. |
|
random_edge = tuple(random.sample(self.nodes, 2)) |
|
return random_edge |
|
|
|
def add_random_edges(self, total_edges): |
|
"""Add random edges until the number of desired edges is reached.""" |
|
while len(self.edges) < total_edges: |
|
self.add_edge(self.make_random_edge()) |
|
|
|
def sort_edges(self): |
|
"""If undirected, sort order that the nodes are listed in the edge.""" |
|
if not self.digraph: |
|
self.edges = [((t, s) if t < s else (s, t)) for s, t in self.edges] |
|
self.edges.sort() |
|
|
|
def generate_gml(self): |
|
# Inspiration: |
|
# http://networkx.lanl.gov/_modules/networkx/readwrite/gml.html#generate_gml |
|
indent = ' ' * 4 |
|
|
|
yield 'graph [' |
|
if self.digraph: |
|
yield indent + 'directed 1' |
|
|
|
# Write nodes |
|
for index, node in enumerate(self.nodes): |
|
yield indent + 'node [' |
|
yield indent * 2 + 'id {}'.format(index) |
|
yield indent * 2 + 'label "{}"'.format(str(node)) |
|
yield indent + ']' |
|
|
|
# Write edges |
|
for source, target in self.edges: |
|
yield indent + 'edge [' |
|
yield indent * 2 + 'source {}'.format(self.nodes.index(source)) |
|
yield indent * 2 + 'target {}'.format(self.nodes.index(target)) |
|
yield indent + ']' |
|
|
|
yield ']' |
|
|
|
def write_gml(self, fname): |
|
with open(fname, mode='w') as f: |
|
for line in self.generate_gml(): |
|
line += '\n' |
|
f.write(line.encode('latin-1')) |
|
|
|
|
|
def check_num_edges(nodes, num_edges, loops, multigraph, digraph): |
|
"""Checks that the number of requested edges is acceptable.""" |
|
num_nodes = len(nodes) |
|
# Check min edges |
|
min_edges = num_nodes - 1 |
|
if num_edges < min_edges: |
|
raise ValueError('num_edges less than minimum (%i)' % min_edges) |
|
# Check max edges |
|
max_edges = num_nodes * (num_nodes - 1) |
|
if not digraph: |
|
max_edges /= 2 |
|
if loops: |
|
max_edges += num_nodes |
|
if not multigraph and num_edges > max_edges: |
|
raise ValueError('num_edges greater than maximum (%i)' % max_edges) |
|
|
|
|
|
def naive(nodes, num_edges, loops=False, multigraph=False, digraph=False): |
|
# Idea: |
|
# Each node starts off in its own component. |
|
# Keep track of the components, combining them when an edge merges two. |
|
# While there are less edges than requested: |
|
# Randomly select two nodes, and create an edge between them. |
|
# If there is more than one component remaining, repeat the process. |
|
|
|
check_num_edges(nodes, num_edges, loops, multigraph, digraph) |
|
|
|
def update_components(components, edge): |
|
# Update the component list. |
|
comp_index = [None] * 2 |
|
for index, comp in enumerate(components): |
|
for i in (0, 1): |
|
if edge[i] in comp: |
|
comp_index[i] = index |
|
# Break early once we have found both sets. |
|
if all(x is not None for x in comp_index): |
|
break |
|
# Combine components if the nodes aren't already in the same one. |
|
if comp_index[0] != comp_index[1]: |
|
components[comp_index[0]] |= components[comp_index[1]] |
|
del components[comp_index[1]] |
|
|
|
finished = False |
|
while not finished: |
|
graph = Graph(nodes, loops=loops, multigraph=multigraph, digraph=digraph) |
|
# Start with each node in its own component. |
|
components = [set([x]) for x in nodes] |
|
while len(graph.edges) < num_edges: |
|
# Generate a random edge. |
|
edge = graph.make_random_edge() |
|
if graph.add_edge(edge): |
|
# Update the component list. |
|
update_components(components, edge) |
|
if len(components) == 1: |
|
finished = True |
|
|
|
return graph |
|
|
|
|
|
def partition(nodes, num_edges, loops=False, multigraph=False, digraph=False): |
|
# Algorithm inspiration: |
|
# http://stackoverflow.com/questions/2041517/random-simple-connected-graph-generation-with-given-sparseness |
|
|
|
# Idea: |
|
# Create a random connected graph by adding edges between nodes from |
|
# different partitions. |
|
# Add random edges until the number of desired edges is reached. |
|
|
|
check_num_edges(nodes, num_edges, loops, multigraph, digraph) |
|
|
|
graph = Graph(nodes, loops=loops, multigraph=multigraph, digraph=digraph) |
|
|
|
# Create two partitions, S and T. Initially store all nodes in S. |
|
S, T = set(nodes), set() |
|
|
|
# Randomly select a first node, and place it in T. |
|
node_s = random.sample(S, 1).pop() |
|
S.remove(node_s) |
|
T.add(node_s) |
|
|
|
# Create a random connected graph. |
|
while S: |
|
# Select random node from S, and another in T. |
|
node_s, node_t = random.sample(S, 1).pop(), random.sample(T, 1).pop() |
|
# Create an edge between the nodes, and move the node from S to T. |
|
edge = (node_s, node_t) |
|
assert graph.add_edge(edge) == True |
|
S.remove(node_s) |
|
T.add(node_s) |
|
|
|
# Add random edges until the number of desired edges is reached. |
|
graph.add_random_edges(num_edges) |
|
|
|
return graph |
|
|
|
|
|
def random_walk(nodes, num_edges, loops=False, multigraph=False, digraph=False): |
|
# Algorithm inspiration: |
|
# https://en.wikipedia.org/wiki/Uniform_spanning_tree#The_uniform_spanning_tree |
|
|
|
# Idea: |
|
# Create a uniform spanning tree (UST) using a random walk. |
|
# Add random edges until the number of desired edges is reached. |
|
|
|
check_num_edges(nodes, num_edges, loops, multigraph, digraph) |
|
|
|
# Create two partitions, S and T. Initially store all nodes in S. |
|
S, T = set(nodes), set() |
|
|
|
# Pick a random node, and mark it as visited and the current node. |
|
current_node = random.sample(S, 1).pop() |
|
S.remove(current_node) |
|
T.add(current_node) |
|
|
|
graph = Graph(nodes, loops=loops, multigraph=multigraph, digraph=digraph) |
|
|
|
# Create a random connected graph. |
|
while S: |
|
# Randomly pick the next node from the neighbors of the current node. |
|
# As we are generating a connected graph, we assume a complete graph. |
|
neighbor_node = random.sample(nodes, 1).pop() |
|
# If the new node hasn't been visited, add the edge from current to new. |
|
if neighbor_node not in T: |
|
edge = (current_node, neighbor_node) |
|
graph.add_edge(edge) |
|
S.remove(neighbor_node) |
|
T.add(neighbor_node) |
|
# Set the new node as the current node. |
|
current_node = neighbor_node |
|
|
|
# Add random edges until the number of desired edges is reached. |
|
graph.add_random_edges(num_edges) |
|
|
|
return graph |
|
|
|
|
|
def wilsons_algo(nodes, num_edges, loops=False, multigraph=False, digraph=False): |
|
# Algorithm inspiration: |
|
# https://en.wikipedia.org/wiki/Uniform_spanning_tree#The_uniform_spanning_tree |
|
|
|
# Idea: |
|
# Create a uniform spanning tree (UST) using Wilson's algorithm: |
|
# Start with two random vertices. |
|
# Perform a (loop-erased) random walk between the two nodes. |
|
# While there are still nodes not in the tree: |
|
# Pick a random node not in the tree. |
|
# Perform a random walk from this node until hitting the tree. |
|
# Add random edges until the number of desired edges is reached. |
|
|
|
check_num_edges(nodes, num_edges, loops, multigraph, digraph) |
|
|
|
graph = Graph(nodes, loops=loops, multigraph=multigraph, digraph=digraph) |
|
|
|
raise NotImplementedError() |
|
|
|
|
|
if __name__ == '__main__': |
|
parser = argparse.ArgumentParser(description=__doc__) |
|
parser.add_argument('nodes', |
|
help='filename containing node labels (one per line) ' |
|
'OR integer number of nodes to generate') |
|
parser.add_argument('-e', '--edges', type=int, |
|
help='number of edges (default is minimum possible)') |
|
parser.add_argument('-l', '--loops', action='store_true', |
|
help='allow self-loop edges') |
|
parser.add_argument('-m', '--multigraph', action='store_true', |
|
help='allow parallel edges between nodes') |
|
parser.add_argument('-d', '--digraph', action='store_true', |
|
help='make edges unidirectional') |
|
parser.add_argument('-w', '--wilson', action='store_const', |
|
const='wilsons_algo', dest='approach', |
|
help="use wilson's generation algorithm (best)") |
|
parser.add_argument('-r', '--random-walk', action='store_const', |
|
const='random_walk', dest='approach', |
|
help='use a random-walk generation algorithm (default)') |
|
parser.add_argument('-n', '--naive', action='store_const', |
|
const='naive', dest='approach', |
|
help='use a naive generation algorithm (slower)') |
|
parser.add_argument('-t', '--partition', action='store_const', |
|
const='partition', dest='approach', |
|
help='use a partition-based generation algorithm (biased)') |
|
parser.add_argument('--no-output', action='store_true', |
|
help='do not display any output') |
|
parser.add_argument('-p', '--pretty', action='store_true', |
|
help='print large graphs with each edge on a new line') |
|
parser.add_argument('-g', '--gml', |
|
help='filename to save the graph to in GML format') |
|
args = parser.parse_args() |
|
|
|
# Nodes |
|
try: |
|
nodes = [] |
|
with open(args.nodes) as f: |
|
for line in f: |
|
nodes.append(line.strip()) |
|
except IOError: |
|
try: |
|
nodes = [x for x in xrange(int(args.nodes))] |
|
except ValueError: |
|
raise TypeError('nodes argument must be a filename or an integer') |
|
|
|
# Edges |
|
if args.edges is None: |
|
num_edges = len(nodes) - 1 |
|
else: |
|
num_edges = args.edges |
|
|
|
# Approach |
|
if args.approach: |
|
print 'Setting approach:', args.approach |
|
approach = locals()[args.approach] |
|
else: |
|
approach = random_walk |
|
|
|
# Run |
|
graph = approach(nodes, num_edges, args.loops, args.multigraph, |
|
args.digraph) |
|
|
|
# Display |
|
if not args.no_output: |
|
graph.sort_edges() |
|
if args.pretty: |
|
pprint(graph.edges) |
|
else: |
|
print(graph.edges) |
|
|
|
# Save to GML |
|
if args.gml: |
|
graph.write_gml(args.gml) |
hi...@bwbaugh, I'm getting error like this, "usage: random_connected_graph.py [-h] [-e EDGES] [-l] [-m] [-d] [-w] [-r] [-n]
[-t] [--no-output] [-p] [-g GML]
nodes
random_connected_graph.py: error: too few arguments", please help me to come out of this error