Created
February 16, 2021 14:14
-
-
Save bwiernik/be04c8817046ea0ffea9e9838928ea96 to your computer and use it in GitHub Desktop.
Posterior (predictive) simulation for metafor rma models
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Copyright (2021) Brenton M. Wiernik | |
# Licensed under GPL-3.0 | |
# | |
sim.rma.uni <- function(object, n.sims = object$k, sim.type = c("coef", "sample"), newdata = NULL, control = NULL, ...) { | |
sim.type <- match.arg(sim.type) | |
if (!inherits(object, "rma.uni")) | |
stop(mstyle$stop("Argument 'object' must be an object of class \"rma.uni\".")) | |
if (inherits(object, "robust.rma")) | |
stop(mstyle$stop("Method not available for objects of class \"robust.rma\".")) | |
if (inherits(object, "rma.ls")) | |
stop(mstyle$stop("Method not available for objects of class \"rma.ls\".")) | |
if (inherits(object, "rma.uni.selmodel")) | |
stop(mstyle$stop("Method not available for objects of class \"rma.uni.selmodel\".")) | |
tau2.min <- ifelse(is.null(object$control$tau2.min), | |
min(0, object$tau2), | |
object$control$tau2.min) | |
tau2.max <- ifelse(is.null(object$control$tau2.max), | |
max(100, object$tau2 * 10, tau2.min * 10), | |
object$control$tau2.max) | |
con <- list(tol = .Machine$double.eps^0.25, | |
maxiter = 1000, | |
tau2.min = tau2.min, | |
tau2.max = tau2.max, | |
verbose = FALSE) | |
con.pos <- pmatch(names(control), names(con)) | |
con[c(na.omit(con.pos))] <- control[!is.na(con.pos)] | |
.sim.coef <- function (object, n.sims = 100, con = NULL) { | |
k <- object$k | |
p <- object$p | |
yi <- object$yi | |
vi <- object$vi | |
X <- object$X | |
Y <- cbind(yi) | |
weights <- object$weights | |
stXX <- metafor:::.invcalc(X = X, W = diag(k), k = k) | |
P <- diag(k) - X %*% Matrix::tcrossprod(stXX, X) | |
V <- diag(vi, nrow = k, ncol = k) | |
PV <- P %*% V | |
trPV <- metafor:::.tr(PV) | |
summ <- summary(object) | |
coef <- cbind(summ$b, summ$se) | |
dimnames(coef)[[2]] <- c("coef.est", "coef.sd") | |
tau2.hat <- m$tau2 | |
beta.hat <- coef[, 1, drop = FALSE] | |
V.beta <- vcov(object) / object$s2w | |
tau2 <- rep(NA, n.sims) | |
s2w <- rep(NA, n.sims) | |
beta <- array(NA, c(n.sims, p)) | |
dimnames(beta) <- list(NULL, rownames(beta.hat)) | |
for (s in 1:n.sims) { | |
crit.q <- rchisq(1, k - p) | |
res <- try(uniroot(metafor:::.QE.func, | |
interval = c(con$tau2.min, con$tau2.max), | |
tol = con$tol, | |
maxiter = con$maxiter, | |
Y = Y, vi = vi, X = X, k = k, | |
objective = crit.q, | |
digits = digits)$root, | |
silent = TRUE) | |
if (!inherits(res, "try-error")) { | |
tau2[s] <- res | |
} else { | |
tau2[s] <- NA | |
} | |
s2w[s] <- (tau2[s] * (k - p) + trPV ) / (k - p) | |
beta[s, ] <- MASS::mvrnorm(1, beta.hat, V.beta * s2w[s]) | |
} | |
ans <- list(coef = beta, tau = sqrt(tau2)) | |
return(ans) | |
} | |
res.coef <- .sim.coef(object, n.sims = n.sims, con = con, ...) | |
if (sim.type == "coef") { | |
return(data.frame(res.coef$coef, tau = res.coef$tau)) | |
} else { | |
if (is.null(newdata)) { | |
yhat <- rowSums(object$X * res.coef$coef) | |
yrep <- rnorm(n.sims, yhat, res.coef$tau) | |
attributes(yrep) <- list(coef = data.frame(res.coef$coef, tau = res.coef$tau)) | |
return(yrep) | |
} else { | |
ypred <- newdata %*% res.coef$coef | |
ypred <- rnorm(n.sims, yhat, res.coef$tau) | |
attributes(ypred) <- list(coef = data.frame(res.coef$coef, tau = res.coef$tau)) | |
return(ypred) | |
} | |
} | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment