Skip to content

Instantly share code, notes, and snippets.

View bxshi's full-sized avatar

Dash Shi bxshi

  • University of Notre Dame
  • South Bend, Indiana
View GitHub Profile
i
me
my
myself
we
our
ours
ourselves
you
your
@bxshi
bxshi / d-cat0716-3dx.txt
Created September 25, 2017 00:04
Business 41202 Homework01 processed dataset. This could be loaded by pandas.
PERMNO date VOL RET vwretd ewretd sprtrn
18542 20070103 6138900 -0.002772 -0.001347 -0.000159 -0.001199
18542 20070104 4060000 -0.002616 0.000547 0.000591 0.001228
18542 20070105 6267100 -0.012787 -0.007288 -0.009809 -0.006085
18542 20070108 3977500 0.001162 0.002567 0.001731 0.002220
18542 20070109 3929100 0.005474 -0.000001 0.000262 -0.000517
18542 20070110 6825100 -0.004949 0.002096 0.001338 0.001940
18542 20070111 7440900 -0.005305 0.007322 0.007760 0.006340
18542 20070112 6560800 -0.004333 0.006142 0.006821 0.004853
18542 20070116 6842100 -0.008370 0.000314 0.000561 0.000818
@bxshi
bxshi / q-gnp4791.txt
Created August 31, 2017 05:20
aka dgnp82.txt
0.00632
0.00366
0.01202
0.00627
0.01761
0.00918
0.00820
-0.01170
-0.00587
0.00757
@bxshi
bxshi / m-gm3dx7508.txt
Created August 27, 2017 21:12
Cleaned up version.
date gm vw ew sp
19750131 0.252033 0.141600 0.299260 0.122812
19750228 0.028571 0.058411 0.053918 0.059886
19750331 0.054487 0.030191 0.081497 0.021694
19750430 0.045593 0.046497 0.031093 0.047265
19750530 0.037209 0.055140 0.072876 0.044101
19750630 0.107955 0.051473 0.071792 0.044323
19750731 0.053846 -0.060385 -0.008960 -0.067654
19750829 -0.029684 -0.023557 -0.048118 -0.021070
19750930 0.015228 -0.038010 -0.038867 -0.034645
@bxshi
bxshi / d-3stocks9908.txt
Created August 27, 2017 06:26
Cleaned up version of d-3stocks9908.txt.
date axp cat sbux
19990104 -0.009756 0.029891 -0.040089
19990105 -0.019089 -0.002639 -0.034803
19990106 0.043063 0.026455 -0.008413
19990107 0.012063 0.009021 0.003636
19990108 0.030393 0.042146 0.021739
19990111 -0.016773 0.039216 0.002364
19990112 -0.036471 -0.044811 0.003538
19990113 -0.03602 -0.050617 -0.008813
19990114 -0.027232 -0.027308 0.000593
@bxshi
bxshi / d-ibm3dx7008.txt
Created August 27, 2017 05:39
Cleaned up version of d-ibm3dx7008.txt, this can be read by `np.loadtxt` or `pd.read_csv`.
Date rtn vwretd ewretd sprtrn
19700102 0.000686 0.012137 0.033450 0.010211
19700105 0.009596 0.006375 0.018947 0.004946
19700106 0.000679 -0.007233 -0.005776 -0.006848
19700107 0.000678 -0.001272 0.003559 -0.002047
19700108 0.002034 0.000564 0.002890 0.000540
19700109 -0.001353 -0.002797 -0.002923 -0.003021
19700112 -0.003388 -0.007766 -0.009646 -0.007576
19700113 0.017335 0.000737 -0.001090 0.000981
19700114 -0.001002 -0.002005 -0.005280 -0.001525
@bxshi
bxshi / tmux_local_install.sh
Last active December 3, 2021 15:17 — forked from smsharma/ tmux_local_install.sh
Install tmux locally without root access
#!/bin/bash
# Script for installing tmux on systems where you don't have root access.
# tmux will be installed in $INSTALL_DIR/local/bin.
# It's assumed that wget and a C/C++ compiler are installed.
# exit on error
set -e
TMUX_VERSION=2.3
@bxshi
bxshi / gpu_runner.py
Last active February 15, 2017 18:14
Select GPU and run command
#!/usr/bin/env python3
import argparse
import subprocess
def gpu_ok(gpu_usage, mem_usage, max_gpu_usage, max_mem_usage):
return gpu_usage <= max_gpu_usage and mem_usage < max_mem_usage
if __name__ == '__main__':
@bxshi
bxshi / mr_hits.py
Created January 19, 2017 18:36
Calculate MeanRank and Hits@K using TensorFlow. From github.com/nddsg/ProjC (private repo right now)
def create_eval_ops(model_input, pred_y, all_triples, eval_triples, n_entity,
top_k, idx_1=0, idx_2=1, idx_3=2):
""" Evaluation operations for any model.
For given <h,r> predict t, idx_1 = 0, idx_2 = 1, idx_3 = 2
For given <t,r> predict h, idx_1 = 2, idx_2 = 1, idx_3 = 0
:param model_input: N by 3 matrix, each row is a h,r,t pair
:param pred_y: N by ENTITY_VOCAB matrix
:param all_triples: M by 3 matrix, contains all triples in the KG
@bxshi
bxshi / Hits_at_K_TensorFlow.py
Created January 12, 2017 21:34
Implement Hits@K evaluation metric for Knowledge Graph Completion tasks.
import tensorflow as tf
with tf.Session() as sess:
"""
idx (h,r) top_3
[ [
[0,1], [0,8,3],
[1,3], [7,2,1],
[2,4], [4,3,9],
] ]