-
-
Save bygreencn/4df203390b885956c3d59878e375db71 to your computer and use it in GitHub Desktop.
Python implementation of smoothed z-score algorithm from http://stackoverflow.com/a/22640362/6029703
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python | |
# Implementation of algorithm from http://stackoverflow.com/a/22640362/6029703 | |
import numpy as np | |
import pylab | |
def thresholding_algo(y, lag, threshold, influence): | |
signals = np.zeros(len(y)) | |
filteredY = np.array(y) | |
avgFilter = [0]*len(y) | |
stdFilter = [0]*len(y) | |
avgFilter[lag - 1] = np.mean(y[0:lag]) | |
stdFilter[lag - 1] = np.std(y[0:lag]) | |
for i in range(lag, len(y) - 1): | |
if abs(y[i] - avgFilter[i-1]) > threshold * stdFilter [i-1]: | |
if y[i] > avgFilter[i-1]: | |
signals[i] = 1 | |
else: | |
signals[i] = -1 | |
filteredY[i] = influence * y[i] + (1 - influence) * filteredY[i-1] | |
avgFilter[i] = np.mean(filteredY[(i-lag):i]) | |
stdFilter[i] = np.std(filteredY[(i-lag):i]) | |
else: | |
signals[i] = 0 | |
filteredY[i] = y[i] | |
avgFilter[i] = np.mean(filteredY[(i-lag):i]) | |
stdFilter[i] = np.std(filteredY[(i-lag):i]) | |
return dict(signals = np.asarray(signals), | |
avgFilter = np.asarray(avgFilter), | |
stdFilter = np.asarray(stdFilter)) | |
# Data | |
y = np.array([1,1,1.1,1,0.9,1,1,1.1,1,0.9,1,1.1,1,1,0.9,1,1,1.1,1,1,1,1,1.1,0.9,1,1.1,1,1,0.9, | |
1,1.1,1,1,1.1,1,0.8,0.9,1,1.2,0.9,1,1,1.1,1.2,1,1.5,1,3,2,5,3,2,1,1,1,0.9,1,1,3, | |
2.6,4,3,3.2,2,1,1,0.8,4,4,2,2.5,1,1,1]) | |
# Settings: lag = 30, threshold = 5, influence = 0 | |
lag = 30 | |
threshold = 5 | |
influence = 0 | |
# Run algo with settings from above | |
result = thresholding_algo(y, lag=lag, threshold=threshold, influence=influence) | |
# Plot result | |
pylab.subplot(211) | |
pylab.plot(np.arange(1, len(y)+1), y) | |
pylab.plot(np.arange(1, len(y)+1), | |
result["avgFilter"], color="cyan", lw=2) | |
pylab.plot(np.arange(1, len(y)+1), | |
result["avgFilter"] + threshold * result["stdFilter"], color="green", lw=2) | |
pylab.plot(np.arange(1, len(y)+1), | |
result["avgFilter"] - threshold * result["stdFilter"], color="green", lw=2) | |
pylab.subplot(212) | |
pylab.step(np.arange(1, len(y)+1), result["signals"], color="red", lw=2) | |
pylab.ylim(-1.5, 1.5) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment