Last active
June 30, 2021 13:30
-
-
Save bzamecnik/dcc1d1a39f3e4fa7ac5733d80b79fa2d to your computer and use it in GitHub Desktop.
Keras MNIST with Sequence - tracing with multiple processes
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
""" | |
Title: Simple MNIST convnet | |
Author: [fchollet](https://twitter.com/fchollet) | |
Date created: 2015/06/19 | |
Last modified: 2020/04/21 | |
Description: A simple convnet that achieves ~99% test accuracy on MNIST. | |
Modified: | |
- data wrapped as a Sequence | |
- addede various prints to trace the processes while multiprocessing | |
Observations: | |
- it works for: | |
- both fit() and fit_generator() if the sequence is thread-safe | |
- both processes/threads | |
- all multiprocessing methods | |
- Keras peeks at the index 0 of the sequence from the main process! | |
- GeneratorDataAdapter.__init__() - peek_and_restore() | |
- on_batch_end() is also called from the main process | |
- otherwise __getitem__ is called from subprocesses | |
- the are separate processes for training/validation data | |
- for fork method the subprocesses are reused across epochs | |
- for forkserver/spawn methods the subprocesses are renew for each epoch | |
""" | |
""" | |
## Setup | |
""" | |
if __name__ == '__main__': | |
import multiprocessing as mp | |
mp.set_start_method('spawn') # spawn or forkserver (default is fork) | |
import os | |
print('new process', os.getpid()) | |
import time | |
import numpy as np | |
from tensorflow import keras | |
from tensorflow.keras import layers | |
#import tensorflow.compat.v1 as tf | |
#import tensorflow.compat.v1.keras.backend as K | |
#K.set_session(tf.Session(config=tf.ConfigProto(gpu_options=tf.GPUOptions(allow_growth=True)))) | |
from tensorflow.keras.utils import Sequence | |
""" | |
## Prepare the data | |
""" | |
# Model / data parameters | |
num_classes = 10 | |
input_shape = (28, 28, 1) | |
# the data, split between train and test sets | |
(x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data() | |
# Scale images to the [0, 1] range | |
x_train = x_train.astype("float32") / 255 | |
x_test = x_test.astype("float32") / 255 | |
# Make sure images have shape (28, 28, 1) | |
x_train = np.expand_dims(x_train, -1) | |
x_test = np.expand_dims(x_test, -1) | |
print("x_train shape:", x_train.shape) | |
print(x_train.shape[0], "train samples") | |
print(x_test.shape[0], "test samples") | |
# convert class vectors to binary class matrices | |
y_train = keras.utils.to_categorical(y_train, num_classes) | |
y_test = keras.utils.to_categorical(y_test, num_classes) | |
# NOTES | |
# - when multiprocessing=True it runs each data sequence in a separate process | |
# but reused across epochs | |
# - there's on_epoch_end() hook, but not on_epoch_begin() | |
# - it gets called from the main process, not the subprocess! | |
class MnistSequence(Sequence): | |
def __init__(self, x, y, batch_size, name): | |
self.name = name | |
self.x = x | |
self.y = y | |
self.batch_size = batch_size | |
print(self.name, 'MnistSequence.__init__(), PID:', os.getpid(), 'len:', len(self)) | |
def __len__(self): | |
return len(self.x) // self.batch_size | |
def __getitem__(self, i): | |
# if i == 0: | |
# raise ValueError('foo') | |
# print(self.name, 'MnistSequence.__getitem__(0), PID:', os.getpid()) | |
print(self.name, f'MnistSequence.__getitem__({i}), PID:', os.getpid()) | |
start = i * self.batch_size | |
end = start + self.batch_size | |
# time.sleep(0.01) | |
return self.x[start:end], self.y[start:end] | |
def on_epoch_end(self): | |
print(self.name, 'MnistSequence.on_epoch_end(), PID:', os.getpid()) | |
batch_size = 1024 | |
if __name__ == '__main__': | |
print('main process', os.getpid()) | |
seq_train = MnistSequence(x_train, y_train, batch_size, 'TRAIN') | |
seq_test = MnistSequence(x_test, y_test, batch_size, 'VAL') | |
""" | |
## Build the model | |
""" | |
model = keras.Sequential( | |
[ | |
keras.Input(shape=input_shape), | |
layers.Conv2D(32, kernel_size=(3, 3), activation="relu"), | |
layers.MaxPooling2D(pool_size=(2, 2)), | |
layers.Conv2D(64, kernel_size=(3, 3), activation="relu"), | |
layers.MaxPooling2D(pool_size=(2, 2)), | |
layers.Flatten(), | |
layers.Dropout(0.5), | |
layers.Dense(num_classes, activation="softmax"), | |
] | |
) | |
model.summary() | |
""" | |
## Train the model | |
""" | |
epochs = 2 | |
model.compile(loss="categorical_crossentropy", optimizer="adam", metrics=["accuracy"]) | |
# model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, validation_split=0.1) | |
model.fit( | |
#x_train, y_train, | |
#validation_data=(x_test, y_test), | |
seq_train, | |
validation_data=seq_test, | |
shuffle=False, | |
batch_size=batch_size, | |
epochs=epochs, | |
#workers=2, | |
use_multiprocessing=True, | |
) | |
# model.fit_generator( | |
# seq_train, | |
# validation_data=seq_test, | |
# shuffle=False, | |
# epochs=epochs, | |
# use_multiprocessing=True, | |
# ) | |
# """ | |
# ## Evaluate the trained model | |
# """ | |
# score = model.evaluate(x_test, y_test, verbose=0) | |
# print("Test loss:", score[0]) | |
# print("Test accuracy:", score[1]) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
new process 28285 | |
x_train shape: (60000, 28, 28, 1) | |
60000 train samples | |
10000 test samples | |
main process 28285 | |
TRAIN MnistSequence.__init__(), PID: 28285 len: 58 | |
VAL MnistSequence.__init__(), PID: 28285 len: 9 | |
Model: "sequential" | |
_________________________________________________________________ | |
Layer (type) Output Shape Param # | |
================================================================= | |
conv2d (Conv2D) (None, 26, 26, 32) 320 | |
_________________________________________________________________ | |
max_pooling2d (MaxPooling2D) (None, 13, 13, 32) 0 | |
_________________________________________________________________ | |
conv2d_1 (Conv2D) (None, 11, 11, 64) 18496 | |
_________________________________________________________________ | |
max_pooling2d_1 (MaxPooling2 (None, 5, 5, 64) 0 | |
_________________________________________________________________ | |
flatten (Flatten) (None, 1600) 0 | |
_________________________________________________________________ | |
dropout (Dropout) (None, 1600) 0 | |
_________________________________________________________________ | |
dense (Dense) (None, 10) 16010 | |
================================================================= | |
Total params: 34,826 | |
Trainable params: 34,826 | |
Non-trainable params: 0 | |
_________________________________________________________________ | |
TRAIN MnistSequence.__getitem__(0), PID: 28285 | |
Epoch 1/2 | |
OrderedEnqueuer: queue.put 0 28285 | |
OrderedEnqueuer: queue.put 1 28285 | |
OrderedEnqueuer: queue.put 2 28285 | |
OrderedEnqueuer: queue.put 3 28285 | |
OrderedEnqueuer: queue.put 4 28285 | |
OrderedEnqueuer: queue.put 5 28285 | |
OrderedEnqueuer: queue.put 6 28285 | |
OrderedEnqueuer: queue.put 7 28285 | |
OrderedEnqueuer: queue.put 8 28285 | |
OrderedEnqueuer: queue.put 9 28285 | |
OrderedEnqueuer: queue.put 10 28285 | |
OrderedEnqueuer: queue.put 11 28285 | |
1/58 [..............................] - ETA: 0s - loss: 2.3259 - accuracy: 0.0977OrderedEnqueuer: queue.put 12 28285 | |
OrderedEnqueuer: queue.put 13 28285 | |
OrderedEnqueuer: queue.put 14 28285 | |
OrderedEnqueuer: queue.put 15 28285 | |
5/58 [=>............................] - ETA: 0s - loss: 2.2472 - accuracy: 0.2086OrderedEnqueuer: queue.put 16 28285 | |
OrderedEnqueuer: queue.put 17 28285 | |
OrderedEnqueuer: queue.put 18 28285 | |
OrderedEnqueuer: queue.put 19 28285 | |
OrderedEnqueuer: queue.put 20 28285 | |
10/58 [====>.........................] - ETA: 0s - loss: 2.1480 - accuracy: 0.3295OrderedEnqueuer: queue.put 21 28285 | |
OrderedEnqueuer: queue.put 22 28285 | |
OrderedEnqueuer: queue.put 23 28285 | |
OrderedEnqueuer: queue.put 24 28285 | |
OrderedEnqueuer: queue.put 25 28285 | |
15/58 [======>.......................] - ETA: 0s - loss: 2.0280 - accuracy: 0.4081OrderedEnqueuer: queue.put 26 28285 | |
OrderedEnqueuer: queue.put 27 28285 | |
OrderedEnqueuer: queue.put 28 28285 | |
OrderedEnqueuer: queue.put 29 28285 | |
OrderedEnqueuer: queue.put 30 28285 | |
20/58 [=========>....................] - ETA: 0s - loss: 1.8731 - accuracy: 0.4724OrderedEnqueuer: queue.put 31 28285 | |
OrderedEnqueuer: queue.put 32 28285 | |
OrderedEnqueuer: queue.put 33 28285 | |
OrderedEnqueuer: queue.put 34 28285 | |
OrderedEnqueuer: queue.put 35 28285 | |
25/58 [===========>..................] - ETA: 0s - loss: 1.7099 - accuracy: 0.5192OrderedEnqueuer: queue.put 36 28285 | |
OrderedEnqueuer: queue.put 37 28285 | |
OrderedEnqueuer: queue.put 38 28285 | |
OrderedEnqueuer: queue.put 39 28285 | |
OrderedEnqueuer: queue.put 40 28285 | |
30/58 [==============>...............] - ETA: 0s - loss: 1.5629 - accuracy: 0.5562OrderedEnqueuer: queue.put 41 28285 | |
OrderedEnqueuer: queue.put 42 28285 | |
OrderedEnqueuer: queue.put 43 28285 | |
OrderedEnqueuer: queue.put 44 28285 | |
OrderedEnqueuer: queue.put 45 28285 | |
35/58 [=================>............] - ETA: 0s - loss: 1.4401 - accuracy: 0.5871OrderedEnqueuer: queue.put 46 28285 | |
OrderedEnqueuer: queue.put 47 28285 | |
OrderedEnqueuer: queue.put 48 28285 | |
OrderedEnqueuer: queue.put 49 28285 | |
OrderedEnqueuer: queue.put 50 28285 | |
40/58 [===================>..........] - ETA: 0s - loss: 1.3319 - accuracy: 0.6162OrderedEnqueuer: queue.put 51 28285 | |
OrderedEnqueuer: queue.put 52 28285 | |
OrderedEnqueuer: queue.put 53 28285 | |
OrderedEnqueuer: queue.put 54 28285 | |
OrderedEnqueuer: queue.put 55 28285 | |
45/58 [======================>.......] - ETA: 0s - loss: 1.2451 - accuracy: 0.6390OrderedEnqueuer: queue.put 56 28285 | |
OrderedEnqueuer: queue.put 57 28285 | |
50/58 [========================>.....] - ETA: 0s - loss: 1.1675 - accuracy: 0.6603 | |
55/58 [===========================>..] - ETA: 0s - loss: 1.0964 - accuracy: 0.6806VAL MnistSequence.__getitem__(0), PID: 28285 | |
TRAIN MnistSequence.on_epoch_end(), PID: 28285 | |
get_index 0 28484 | |
TRAIN MnistSequence.__getitem__(0), PID: 28484 | |
get_index 1 28484 | |
TRAIN MnistSequence.__getitem__(1), PID: 28484 | |
get_index 2 28484 | |
TRAIN MnistSequence.__getitem__(2), PID: 28484 | |
get_index 3 28484 | |
TRAIN MnistSequence.__getitem__(3), PID: 28484 | |
get_index 4 28484 | |
TRAIN MnistSequence.__getitem__(4), PID: 28484 | |
get_index 5 28484 | |
TRAIN MnistSequence.__getitem__(5), PID: 28484 | |
get_index 6 28484 | |
TRAIN MnistSequence.__getitem__(6), PID: 28484 | |
get_index 7 28484 | |
TRAIN MnistSequence.__getitem__(7), PID: 28484 | |
get_index 8 28484 | |
TRAIN MnistSequence.__getitem__(8), PID: 28484 | |
get_index 9 28484 | |
TRAIN MnistSequence.__getitem__(9), PID: 28484 | |
get_index 10 28484 | |
TRAIN MnistSequence.__getitem__(10), PID: 28484 | |
get_index 11 28484 | |
TRAIN MnistSequence.__getitem__(11), PID: 28484 | |
get_index 12 28484 | |
TRAIN MnistSequence.__getitem__(12), PID: 28484 | |
get_index 13 28484 | |
TRAIN MnistSequence.__getitem__(13), PID: 28484 | |
get_index 14 28484 | |
TRAIN MnistSequence.__getitem__(14), PID: 28484 | |
get_index 15 28484 | |
TRAIN MnistSequence.__getitem__(15), PID: 28484 | |
get_index 16 28484 | |
TRAIN MnistSequence.__getitem__(16), PID: 28484 | |
get_index 17 28484 | |
TRAIN MnistSequence.__getitem__(17), PID: 28484 | |
get_index 18 28484 | |
TRAIN MnistSequence.__getitem__(18), PID: 28484 | |
get_index 19 28484 | |
TRAIN MnistSequence.__getitem__(19), PID: 28484 | |
get_index 20 28484 | |
TRAIN MnistSequence.__getitem__(20), PID: 28484 | |
get_index 21 28484 | |
TRAIN MnistSequence.__getitem__(21), PID: 28484 | |
get_index 22 28484 | |
TRAIN MnistSequence.__getitem__(22), PID: 28484 | |
get_index 23 28484 | |
TRAIN MnistSequence.__getitem__(23), PID: 28484 | |
get_index 24 28484 | |
TRAIN MnistSequence.__getitem__(24), PID: 28484 | |
get_index 25 28484 | |
TRAIN MnistSequence.__getitem__(25), PID: 28484 | |
get_index 26 28484 | |
TRAIN MnistSequence.__getitem__(26), PID: 28484 | |
get_index 27 28484 | |
TRAIN MnistSequence.__getitem__(27), PID: 28484 | |
get_index 28 28484 | |
TRAIN MnistSequence.__getitem__(28), PID: 28484 | |
get_index 29 28484 | |
TRAIN MnistSequence.__getitem__(29), PID: 28484 | |
get_index 30 28484 | |
TRAIN MnistSequence.__getitem__(30), PID: 28484 | |
get_index 31 28484 | |
TRAIN MnistSequence.__getitem__(31), PID: 28484 | |
get_index 32 28484 | |
TRAIN MnistSequence.__getitem__(32), PID: 28484 | |
get_index 33 28484 | |
TRAIN MnistSequence.__getitem__(33), PID: 28484 | |
get_index 34 28484 | |
TRAIN MnistSequence.__getitem__(34), PID: 28484 | |
get_index 35 28484 | |
TRAIN MnistSequence.__getitem__(35), PID: 28484 | |
get_index 36 28484 | |
TRAIN MnistSequence.__getitem__(36), PID: 28484 | |
get_index 37 28484 | |
TRAIN MnistSequence.__getitem__(37), PID: 28484 | |
get_index 38 28484 | |
TRAIN MnistSequence.__getitem__(38), PID: 28484 | |
get_index 39 28484 | |
TRAIN MnistSequence.__getitem__(39), PID: 28484 | |
get_index 40 28484 | |
TRAIN MnistSequence.__getitem__(40), PID: 28484 | |
get_index 41 28484 | |
TRAIN MnistSequence.__getitem__(41), PID: 28484 | |
get_index 42 28484 | |
TRAIN MnistSequence.__getitem__(42), PID: 28484 | |
get_index 43 28484 | |
TRAIN MnistSequence.__getitem__(43), PID: 28484 | |
get_index 44 28484 | |
TRAIN MnistSequence.__getitem__(44), PID: 28484 | |
get_index 45 28484 | |
TRAIN MnistSequence.__getitem__(45), PID: 28484 | |
get_index 46 28484 | |
TRAIN MnistSequence.__getitem__(46), PID: 28484 | |
get_index 47 28484 | |
TRAIN MnistSequence.__getitem__(47), PID: 28484 | |
get_index 48 28484 | |
TRAIN MnistSequence.__getitem__(48), PID: 28484 | |
get_index 49 28484 | |
TRAIN MnistSequence.__getitem__(49), PID: 28484 | |
get_index 50 28484 | |
TRAIN MnistSequence.__getitem__(50), PID: 28484 | |
get_index 51 28484 | |
TRAIN MnistSequence.__getitem__(51), PID: 28484 | |
get_index 52 28484 | |
TRAIN MnistSequence.__getitem__(52), PID: 28484 | |
get_index 53 28484 | |
TRAIN MnistSequence.__getitem__(53), PID: 28484 | |
get_index 54 28484 | |
TRAIN MnistSequence.__getitem__(54), PID: 28484 | |
get_index 55 28484 | |
TRAIN MnistSequence.__getitem__(55), PID: 28484 | |
get_index 56 28484 | |
TRAIN MnistSequence.__getitem__(56), PID: 28484 | |
get_index 57 28484 | |
TRAIN MnistSequence.__getitem__(57), PID: 28484 | |
OrderedEnqueuer: queue.put 0 28285 | |
OrderedEnqueuer: queue.put 1 28285 | |
OrderedEnqueuer: queue.put 2 28285 | |
OrderedEnqueuer: queue.put 3 28285 | |
OrderedEnqueuer: queue.put 4 28285 | |
OrderedEnqueuer: queue.put 5 28285 | |
OrderedEnqueuer: queue.put 6 28285 | |
OrderedEnqueuer: queue.put 7 28285 | |
OrderedEnqueuer: queue.put 8 28285 | |
OrderedEnqueuer: queue.put 9 28285 | |
OrderedEnqueuer: queue.put 10 28285 | |
OrderedEnqueuer: queue.put 0 28285 | |
OrderedEnqueuer: queue.put 1 28285 | |
OrderedEnqueuer: queue.put 2 28285 | |
OrderedEnqueuer: queue.put 3 28285 | |
OrderedEnqueuer: queue.put 4 28285 | |
OrderedEnqueuer: queue.put 5 28285 | |
OrderedEnqueuer: queue.put 6 28285 | |
OrderedEnqueuer: queue.put 7 28285 | |
OrderedEnqueuer: queue.put 8 28285 | |
VAL MnistSequence.on_epoch_end(), PID: 28285 | |
58/58 [==============================] - 1s 18ms/step - loss: 1.0545 - accuracy: 0.6930 - val_loss: 0.2796 - val_accuracy: 0.9256 | |
TRAIN MnistSequence.on_epoch_end(), PID: 28285 | |
Epoch 2/2 | |
get_index 0 28509 | |
TRAIN MnistSequence.__getitem__(0), PID: 28509 | |
get_index 1 28509 | |
TRAIN MnistSequence.__getitem__(1), PID: 28509 | |
get_index 2 28509 | |
TRAIN MnistSequence.__getitem__(2), PID: 28509 | |
get_index 3 28509 | |
TRAIN MnistSequence.__getitem__(3), PID: 28509 | |
get_index 4 28509 | |
TRAIN MnistSequence.__getitem__(4), PID: 28509 | |
get_index 5 28509 | |
TRAIN MnistSequence.__getitem__(5), PID: 28509 | |
get_index 6 28509 | |
TRAIN MnistSequence.__getitem__(6), PID: 28509 | |
get_index 7 28509 | |
TRAIN MnistSequence.__getitem__(7), PID: 28509 | |
get_index 8 28509 | |
TRAIN MnistSequence.__getitem__(8), PID: 28509 | |
get_index 9 28509 | |
TRAIN MnistSequence.__getitem__(9), PID: 28509 | |
get_index 10 28509 | |
TRAIN MnistSequence.__getitem__(10), PID: 28509 | |
OrderedEnqueuer: queue.put 0 28285 | |
OrderedEnqueuer: queue.put 1 28285 | |
OrderedEnqueuer: queue.put 2 28285 | |
OrderedEnqueuer: queue.put 3 28285 | |
OrderedEnqueuer: queue.put 4 28285 | |
OrderedEnqueuer: queue.put 5 28285 | |
OrderedEnqueuer: queue.put 6 28285 | |
OrderedEnqueuer: queue.put 7 28285 | |
OrderedEnqueuer: queue.put 8 28285 | |
OrderedEnqueuer: queue.put 9 28285 | |
OrderedEnqueuer: queue.put 10 28285 | |
OrderedEnqueuer: queue.put 11 28285 | |
1/58 [..............................] - ETA: 0s - loss: 0.3856 - accuracy: 0.8887get_index 0 28517 | |
VAL MnistSequence.__getitem__(0), PID: 28517 | |
get_index 1 28517 | |
VAL MnistSequence.__getitem__(1), PID: 28517 | |
get_index 2 28517 | |
VAL MnistSequence.__getitem__(2), PID: 28517 | |
get_index 3 28517 | |
VAL MnistSequence.__getitem__(3), PID: 28517 | |
get_index 4 28517 | |
VAL MnistSequence.__getitem__(4), PID: 28517 | |
get_index 5 28517 | |
VAL MnistSequence.__getitem__(5), PID: 28517 | |
get_index 6 28517 | |
VAL MnistSequence.__getitem__(6), PID: 28517 | |
get_index 7 28517 | |
VAL MnistSequence.__getitem__(7), PID: 28517 | |
get_index 8 28517 | |
VAL MnistSequence.__getitem__(8), PID: 28517 | |
OrderedEnqueuer: queue.put 12 28285 | |
OrderedEnqueuer: queue.put 13 28285 | |
OrderedEnqueuer: queue.put 14 28285 | |
OrderedEnqueuer: queue.put 15 28285 | |
5/58 [=>............................] - ETA: 0s - loss: 0.3392 - accuracy: 0.9037OrderedEnqueuer: queue.put 16 28285 | |
OrderedEnqueuer: queue.put 17 28285 | |
OrderedEnqueuer: queue.put 18 28285 | |
OrderedEnqueuer: queue.put 19 28285 | |
9/58 [===>..........................] - ETA: 0s - loss: 0.3415 - accuracy: 0.9002OrderedEnqueuer: queue.put 20 28285 | |
OrderedEnqueuer: queue.put 21 28285 | |
OrderedEnqueuer: queue.put 22 28285 | |
OrderedEnqueuer: queue.put 23 28285 | |
OrderedEnqueuer: queue.put 24 28285 | |
14/58 [======>.......................] - ETA: 0s - loss: 0.3366 - accuracy: 0.9003OrderedEnqueuer: queue.put 25 28285 | |
OrderedEnqueuer: queue.put 26 28285 | |
OrderedEnqueuer: queue.put 27 28285 | |
OrderedEnqueuer: queue.put 28 28285 | |
OrderedEnqueuer: queue.put 29 28285 | |
19/58 [========>.....................] - ETA: 0s - loss: 0.3274 - accuracy: 0.9020OrderedEnqueuer: queue.put 30 28285 | |
OrderedEnqueuer: queue.put 31 28285 | |
OrderedEnqueuer: queue.put 32 28285 | |
OrderedEnqueuer: queue.put 33 28285 | |
23/58 [==========>...................] - ETA: 0s - loss: 0.3149 - accuracy: 0.9052OrderedEnqueuer: queue.put 34 28285 | |
OrderedEnqueuer: queue.put 35 28285 | |
OrderedEnqueuer: queue.put 36 28285 | |
OrderedEnqueuer: queue.put 37 28285 | |
OrderedEnqueuer: queue.put 38 28285 | |
28/58 [=============>................] - ETA: 0s - loss: 0.3086 - accuracy: 0.9069OrderedEnqueuer: queue.put 39 28285 | |
OrderedEnqueuer: queue.put 40 28285 | |
OrderedEnqueuer: queue.put 41 28285 | |
OrderedEnqueuer: queue.put 42 28285 | |
OrderedEnqueuer: queue.put 43 28285 | |
33/58 [================>.............] - ETA: 0s - loss: 0.3060 - accuracy: 0.9079OrderedEnqueuer: queue.put 44 28285 | |
OrderedEnqueuer: queue.put 45 28285 | |
OrderedEnqueuer: queue.put 46 28285 | |
OrderedEnqueuer: queue.put 47 28285 | |
OrderedEnqueuer: queue.put 48 28285 | |
38/58 [==================>...........] - ETA: 0s - loss: 0.2965 - accuracy: 0.9106OrderedEnqueuer: queue.put 49 28285 | |
OrderedEnqueuer: queue.put 50 28285 | |
OrderedEnqueuer: queue.put 51 28285 | |
OrderedEnqueuer: queue.put 52 28285 | |
OrderedEnqueuer: queue.put 53 28285 | |
43/58 [=====================>........] - ETA: 0s - loss: 0.2901 - accuracy: 0.9126OrderedEnqueuer: queue.put 54 28285 | |
OrderedEnqueuer: queue.put 55 28285 | |
OrderedEnqueuer: queue.put 56 28285 | |
OrderedEnqueuer: queue.put 57 28285 | |
48/58 [=======================>......] - ETA: 0s - loss: 0.2846 - accuracy: 0.9141 | |
53/58 [==========================>...] - ETA: 0s - loss: 0.2799 - accuracy: 0.9159 | |
58/58 [==============================] - ETA: 0s - loss: 0.2704 - accuracy: 0.9190OrderedEnqueuer: queue.put 0 28285 | |
OrderedEnqueuer: queue.put 1 28285 | |
OrderedEnqueuer: queue.put 2 28285 | |
OrderedEnqueuer: queue.put 3 28285 | |
OrderedEnqueuer: queue.put 4 28285 | |
OrderedEnqueuer: queue.put 5 28285 | |
OrderedEnqueuer: queue.put 6 28285 | |
OrderedEnqueuer: queue.put 7 28285 | |
OrderedEnqueuer: queue.put 8 28285 | |
TRAIN MnistSequence.on_epoch_end(), PID: 28285 | |
get_index 0 28524 | |
TRAIN MnistSequence.__getitem__(0), PID: 28524 | |
get_index 1 28524 | |
TRAIN MnistSequence.__getitem__(1), PID: 28524 | |
get_index 2 28524 | |
TRAIN MnistSequence.__getitem__(2), PID: 28524 | |
get_index 3 28524 | |
TRAIN MnistSequence.__getitem__(3), PID: 28524 | |
get_index 4 28524 | |
TRAIN MnistSequence.__getitem__(4), PID: 28524 | |
get_index 5 28524 | |
TRAIN MnistSequence.__getitem__(5), PID: 28524 | |
get_index 6 28524 | |
TRAIN MnistSequence.__getitem__(6), PID: 28524 | |
get_index 7 28524 | |
TRAIN MnistSequence.__getitem__(7), PID: 28524 | |
get_index 8 28524 | |
TRAIN MnistSequence.__getitem__(8), PID: 28524 | |
get_index 9 28524 | |
TRAIN MnistSequence.__getitem__(9), PID: 28524 | |
get_index 10 28524 | |
TRAIN MnistSequence.__getitem__(10), PID: 28524 | |
get_index 11 28524 | |
TRAIN MnistSequence.__getitem__(11), PID: 28524 | |
get_index 12 28524 | |
TRAIN MnistSequence.__getitem__(12), PID: 28524 | |
get_index 13 28524 | |
TRAIN MnistSequence.__getitem__(13), PID: 28524 | |
get_index 14 28524 | |
TRAIN MnistSequence.__getitem__(14), PID: 28524 | |
get_index 15 28524 | |
TRAIN MnistSequence.__getitem__(15), PID: 28524 | |
get_index 16 28524 | |
TRAIN MnistSequence.__getitem__(16), PID: 28524 | |
get_index 17 28524 | |
TRAIN MnistSequence.__getitem__(17), PID: 28524 | |
get_index 18 28524 | |
TRAIN MnistSequence.__getitem__(18), PID: 28524 | |
get_index 19 28524 | |
TRAIN MnistSequence.__getitem__(19), PID: 28524 | |
get_index 20 28524 | |
TRAIN MnistSequence.__getitem__(20), PID: 28524 | |
get_index 21 28524 | |
TRAIN MnistSequence.__getitem__(21), PID: 28524 | |
get_index 22 28524 | |
TRAIN MnistSequence.__getitem__(22), PID: 28524 | |
get_index 23 28524 | |
TRAIN MnistSequence.__getitem__(23), PID: 28524 | |
get_index 24 28524 | |
TRAIN MnistSequence.__getitem__(24), PID: 28524 | |
get_index 25 28524 | |
TRAIN MnistSequence.__getitem__(25), PID: 28524 | |
get_index 26 28524 | |
TRAIN MnistSequence.__getitem__(26), PID: 28524 | |
get_index 27 28524 | |
TRAIN MnistSequence.__getitem__(27), PID: 28524 | |
get_index 28 28524 | |
TRAIN MnistSequence.__getitem__(28), PID: 28524 | |
get_index 29 28524 | |
TRAIN MnistSequence.__getitem__(29), PID: 28524 | |
get_index 30 28524 | |
TRAIN MnistSequence.__getitem__(30), PID: 28524 | |
get_index 31 28524 | |
TRAIN MnistSequence.__getitem__(31), PID: 28524 | |
get_index 32 28524 | |
TRAIN MnistSequence.__getitem__(32), PID: 28524 | |
get_index 33 28524 | |
TRAIN MnistSequence.__getitem__(33), PID: 28524 | |
get_index 34 28524 | |
TRAIN MnistSequence.__getitem__(34), PID: 28524 | |
get_index 35 28524 | |
TRAIN MnistSequence.__getitem__(35), PID: 28524 | |
get_index 36 28524 | |
TRAIN MnistSequence.__getitem__(36), PID: 28524 | |
get_index 37 28524 | |
TRAIN MnistSequence.__getitem__(37), PID: 28524 | |
get_index 38 28524 | |
TRAIN MnistSequence.__getitem__(38), PID: 28524 | |
get_index 39 28524 | |
TRAIN MnistSequence.__getitem__(39), PID: 28524 | |
get_index 40 28524 | |
TRAIN MnistSequence.__getitem__(40), PID: 28524 | |
get_index 41 28524 | |
TRAIN MnistSequence.__getitem__(41), PID: 28524 | |
get_index 42 28524 | |
TRAIN MnistSequence.__getitem__(42), PID: 28524 | |
get_index 43 28524 | |
TRAIN MnistSequence.__getitem__(43), PID: 28524 | |
get_index 44 28524 | |
TRAIN MnistSequence.__getitem__(44), PID: 28524 | |
get_index 45 28524 | |
TRAIN MnistSequence.__getitem__(45), PID: 28524 | |
get_index 46 28524 | |
TRAIN MnistSequence.__getitem__(46), PID: 28524 | |
get_index 47 28524 | |
TRAIN MnistSequence.__getitem__(47), PID: 28524 | |
get_index 48 28524 | |
TRAIN MnistSequence.__getitem__(48), PID: 28524 | |
get_index 49 28524 | |
TRAIN MnistSequence.__getitem__(49), PID: 28524 | |
get_index 50 28524 | |
TRAIN MnistSequence.__getitem__(50), PID: 28524 | |
get_index 51 28524 | |
TRAIN MnistSequence.__getitem__(51), PID: 28524 | |
get_index 52 28524 | |
TRAIN MnistSequence.__getitem__(52), PID: 28524 | |
get_index 53 28524 | |
TRAIN MnistSequence.__getitem__(53), PID: 28524 | |
get_index 54 28524 | |
TRAIN MnistSequence.__getitem__(54), PID: 28524 | |
get_index 55 28524 | |
TRAIN MnistSequence.__getitem__(55), PID: 28524 | |
get_index 56 28524 | |
TRAIN MnistSequence.__getitem__(56), PID: 28524 | |
get_index 57 28524 | |
TRAIN MnistSequence.__getitem__(57), PID: 28524 | |
get_index 0 28531 | |
VAL MnistSequence.__getitem__(0), PID: 28531 | |
get_index 1 28531 | |
VAL MnistSequence.__getitem__(1), PID: 28531 | |
get_index 2 28531 | |
VAL MnistSequence.__getitem__(2), PID: 28531 | |
get_index 3 28531 | |
VAL MnistSequence.__getitem__(3), PID: 28531 | |
get_index 4 28531 | |
VAL MnistSequence.__getitem__(4), PID: 28531 | |
get_index 5 28531 | |
VAL MnistSequence.__getitem__(5), PID: 28531 | |
get_index 6 28531 | |
VAL MnistSequence.__getitem__(6), PID: 28531 | |
get_index 7 28531 | |
VAL MnistSequence.__getitem__(7), PID: 28531 | |
get_index 8 28531 | |
VAL MnistSequence.__getitem__(8), PID: 28531 | |
OrderedEnqueuer: queue.put 0 28285 | |
OrderedEnqueuer: queue.put 1 28285 | |
OrderedEnqueuer: queue.put 2 28285 | |
OrderedEnqueuer: queue.put 3 28285 | |
OrderedEnqueuer: queue.put 4 28285 | |
OrderedEnqueuer: queue.put 5 28285 | |
OrderedEnqueuer: queue.put 6 28285 | |
OrderedEnqueuer: queue.put 7 28285 | |
OrderedEnqueuer: queue.put 8 28285 | |
OrderedEnqueuer: queue.put 9 28285 | |
OrderedEnqueuer: queue.put 10 28285 | |
VAL MnistSequence.on_epoch_end(), PID: 28285 | |
58/58 [==============================] - 1s 16ms/step - loss: 0.2704 - accuracy: 0.9190 - val_loss: 0.1454 - val_accuracy: 0.9588 | |
TRAIN MnistSequence.on_epoch_end(), PID: 28285 | |
get_index 0 28536 | |
TRAIN MnistSequence.__getitem__(0), PID: 28536 | |
get_index 1 28536 | |
TRAIN MnistSequence.__getitem__(1), PID: 28536 | |
get_index 2 28536 | |
TRAIN MnistSequence.__getitem__(2), PID: 28536 | |
get_index 3 28536 | |
TRAIN MnistSequence.__getitem__(3), PID: 28536 | |
get_index 4 28536 | |
TRAIN MnistSequence.__getitem__(4), PID: 28536 | |
get_index 5 28536 | |
TRAIN MnistSequence.__getitem__(5), PID: 28536 | |
get_index 6 28536 | |
TRAIN MnistSequence.__getitem__(6), PID: 28536 | |
get_index 7 28536 | |
TRAIN MnistSequence.__getitem__(7), PID: 28536 | |
get_index 8 28536 | |
TRAIN MnistSequence.__getitem__(8), PID: 28536 | |
get_index 9 28536 | |
TRAIN MnistSequence.__getitem__(9), PID: 28536 | |
get_index 10 28536 | |
TRAIN MnistSequence.__getitem__(10), PID: 28536 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
new process 27656 | |
x_train shape: (60000, 28, 28, 1) | |
60000 train samples | |
10000 test samples | |
main process 27656 | |
TRAIN MnistSequence.__init__(), PID: 27656 len: 58 | |
VAL MnistSequence.__init__(), PID: 27656 len: 9 | |
Model: "sequential" | |
_________________________________________________________________ | |
Layer (type) Output Shape Param # | |
================================================================= | |
conv2d (Conv2D) (None, 26, 26, 32) 320 | |
_________________________________________________________________ | |
max_pooling2d (MaxPooling2D) (None, 13, 13, 32) 0 | |
_________________________________________________________________ | |
conv2d_1 (Conv2D) (None, 11, 11, 64) 18496 | |
_________________________________________________________________ | |
max_pooling2d_1 (MaxPooling2 (None, 5, 5, 64) 0 | |
_________________________________________________________________ | |
flatten (Flatten) (None, 1600) 0 | |
_________________________________________________________________ | |
dropout (Dropout) (None, 1600) 0 | |
_________________________________________________________________ | |
dense (Dense) (None, 10) 16010 | |
================================================================= | |
Total params: 34,826 | |
Trainable params: 34,826 | |
Non-trainable params: 0 | |
_________________________________________________________________ | |
TRAIN MnistSequence.__getitem__(0), PID: 27656 | |
Epoch 1/2 | |
OrderedEnqueuer: queue.put 0 27656 | |
OrderedEnqueuer: queue.put 1 27656 | |
OrderedEnqueuer: queue.put 2 27656 | |
OrderedEnqueuer: queue.put 3 27656 | |
OrderedEnqueuer: queue.put 4 27656 | |
OrderedEnqueuer: queue.put 5 27656 | |
OrderedEnqueuer: queue.put 6 27656 | |
OrderedEnqueuer: queue.put 7 27656 | |
OrderedEnqueuer: queue.put 8 27656 | |
OrderedEnqueuer: queue.put 9 27656 | |
OrderedEnqueuer: queue.put 10 27656 | |
OrderedEnqueuer: queue.put 11 27656 | |
1/58 [..............................] - ETA: 0s - loss: 2.3068 - accuracy: 0.1240OrderedEnqueuer: queue.put 12 27656 | |
OrderedEnqueuer: queue.put 13 27656 | |
OrderedEnqueuer: queue.put 14 27656 | |
OrderedEnqueuer: queue.put 15 27656 | |
5/58 [=>............................] - ETA: 0s - loss: 2.2439 - accuracy: 0.2193OrderedEnqueuer: queue.put 16 27656 | |
OrderedEnqueuer: queue.put 17 27656 | |
OrderedEnqueuer: queue.put 18 27656 | |
OrderedEnqueuer: queue.put 19 27656 | |
9/58 [===>..........................] - ETA: 0s - loss: 2.1708 - accuracy: 0.3194OrderedEnqueuer: queue.put 20 27656 | |
OrderedEnqueuer: queue.put 21 27656 | |
OrderedEnqueuer: queue.put 22 27656 | |
OrderedEnqueuer: queue.put 23 27656 | |
OrderedEnqueuer: queue.put 24 27656 | |
14/58 [======>.......................] - ETA: 0s - loss: 2.0505 - accuracy: 0.4100OrderedEnqueuer: queue.put 25 27656 | |
OrderedEnqueuer: queue.put 26 27656 | |
OrderedEnqueuer: queue.put 27 27656 | |
OrderedEnqueuer: queue.put 28 27656 | |
18/58 [========>.....................] - ETA: 0s - loss: 1.9343 - accuracy: 0.4603OrderedEnqueuer: queue.put 29 27656 | |
OrderedEnqueuer: queue.put 30 27656 | |
OrderedEnqueuer: queue.put 31 27656 | |
OrderedEnqueuer: queue.put 32 27656 | |
OrderedEnqueuer: queue.put 33 27656 | |
23/58 [==========>...................] - ETA: 0s - loss: 1.7664 - accuracy: 0.5124OrderedEnqueuer: queue.put 34 27656 | |
OrderedEnqueuer: queue.put 35 27656 | |
OrderedEnqueuer: queue.put 36 27656 | |
OrderedEnqueuer: queue.put 37 27656 | |
OrderedEnqueuer: queue.put 38 27656 | |
28/58 [=============>................] - ETA: 0s - loss: 1.6086 - accuracy: 0.5524OrderedEnqueuer: queue.put 39 27656 | |
OrderedEnqueuer: queue.put 40 27656 | |
OrderedEnqueuer: queue.put 41 27656 | |
OrderedEnqueuer: queue.put 42 27656 | |
32/58 [===============>..............] - ETA: 0s - loss: 1.5078 - accuracy: 0.5759OrderedEnqueuer: queue.put 43 27656 | |
OrderedEnqueuer: queue.put 44 27656 | |
OrderedEnqueuer: queue.put 45 27656 | |
OrderedEnqueuer: queue.put 46 27656 | |
OrderedEnqueuer: queue.put 47 27656 | |
37/58 [==================>...........] - ETA: 0s - loss: 1.3879 - accuracy: 0.6060OrderedEnqueuer: queue.put 48 27656 | |
OrderedEnqueuer: queue.put 49 27656 | |
OrderedEnqueuer: queue.put 50 27656 | |
OrderedEnqueuer: queue.put 51 27656 | |
OrderedEnqueuer: queue.put 52 27656 | |
42/58 [====================>.........] - ETA: 0s - loss: 1.2888 - accuracy: 0.6315OrderedEnqueuer: queue.put 53 27656 | |
OrderedEnqueuer: queue.put 54 27656 | |
OrderedEnqueuer: queue.put 55 27656 | |
OrderedEnqueuer: queue.put 56 27656 | |
OrderedEnqueuer: queue.put 57 27656 | |
47/58 [=======================>......] - ETA: 0s - loss: 1.2043 - accuracy: 0.6537 | |
52/58 [=========================>....] - ETA: 0s - loss: 1.1320 - accuracy: 0.6739 | |
57/58 [============================>.] - ETA: 0s - loss: 1.0618 - accuracy: 0.6938VAL MnistSequence.__getitem__(0), PID: 27656 | |
TRAIN MnistSequence.on_epoch_end(), PID: 27656 | |
new process 27873 | |
x_train shape: (60000, 28, 28, 1) | |
60000 train samples | |
10000 test samples | |
get_index 0 27873 | |
TRAIN MnistSequence.__getitem__(0), PID: 27873 | |
get_index 1 27873 | |
TRAIN MnistSequence.__getitem__(1), PID: 27873 | |
get_index 2 27873 | |
TRAIN MnistSequence.__getitem__(2), PID: 27873 | |
get_index 3 27873 | |
TRAIN MnistSequence.__getitem__(3), PID: 27873 | |
get_index 4 27873 | |
TRAIN MnistSequence.__getitem__(4), PID: 27873 | |
get_index 5 27873 | |
TRAIN MnistSequence.__getitem__(5), PID: 27873 | |
get_index 6 27873 | |
TRAIN MnistSequence.__getitem__(6), PID: 27873 | |
get_index 7 27873 | |
TRAIN MnistSequence.__getitem__(7), PID: 27873 | |
get_index 8 27873 | |
TRAIN MnistSequence.__getitem__(8), PID: 27873 | |
get_index 9 27873 | |
TRAIN MnistSequence.__getitem__(9), PID: 27873 | |
get_index 10 27873 | |
TRAIN MnistSequence.__getitem__(10), PID: 27873 | |
get_index 11 27873 | |
TRAIN MnistSequence.__getitem__(11), PID: 27873 | |
get_index 12 27873 | |
TRAIN MnistSequence.__getitem__(12), PID: 27873 | |
get_index 13 27873 | |
TRAIN MnistSequence.__getitem__(13), PID: 27873 | |
get_index 14 27873 | |
TRAIN MnistSequence.__getitem__(14), PID: 27873 | |
get_index 15 27873 | |
TRAIN MnistSequence.__getitem__(15), PID: 27873 | |
get_index 16 27873 | |
TRAIN MnistSequence.__getitem__(16), PID: 27873 | |
get_index 17 27873 | |
TRAIN MnistSequence.__getitem__(17), PID: 27873 | |
get_index 18 27873 | |
TRAIN MnistSequence.__getitem__(18), PID: 27873 | |
get_index 19 27873 | |
TRAIN MnistSequence.__getitem__(19), PID: 27873 | |
get_index 20 27873 | |
TRAIN MnistSequence.__getitem__(20), PID: 27873 | |
get_index 21 27873 | |
TRAIN MnistSequence.__getitem__(21), PID: 27873 | |
get_index 22 27873 | |
TRAIN MnistSequence.__getitem__(22), PID: 27873 | |
get_index 23 27873 | |
TRAIN MnistSequence.__getitem__(23), PID: 27873 | |
get_index 24 27873 | |
TRAIN MnistSequence.__getitem__(24), PID: 27873 | |
get_index 25 27873 | |
TRAIN MnistSequence.__getitem__(25), PID: 27873 | |
get_index 26 27873 | |
TRAIN MnistSequence.__getitem__(26), PID: 27873 | |
get_index 27 27873 | |
TRAIN MnistSequence.__getitem__(27), PID: 27873 | |
get_index 28 27873 | |
TRAIN MnistSequence.__getitem__(28), PID: 27873 | |
get_index 29 27873 | |
TRAIN MnistSequence.__getitem__(29), PID: 27873 | |
get_index 30 27873 | |
TRAIN MnistSequence.__getitem__(30), PID: 27873 | |
get_index 31 27873 | |
TRAIN MnistSequence.__getitem__(31), PID: 27873 | |
get_index 32 27873 | |
TRAIN MnistSequence.__getitem__(32), PID: 27873 | |
get_index 33 27873 | |
TRAIN MnistSequence.__getitem__(33), PID: 27873 | |
get_index 34 27873 | |
TRAIN MnistSequence.__getitem__(34), PID: 27873 | |
get_index 35 27873 | |
TRAIN MnistSequence.__getitem__(35), PID: 27873 | |
get_index 36 27873 | |
TRAIN MnistSequence.__getitem__(36), PID: 27873 | |
get_index 37 27873 | |
TRAIN MnistSequence.__getitem__(37), PID: 27873 | |
get_index 38 27873 | |
TRAIN MnistSequence.__getitem__(38), PID: 27873 | |
get_index 39 27873 | |
TRAIN MnistSequence.__getitem__(39), PID: 27873 | |
get_index 40 27873 | |
TRAIN MnistSequence.__getitem__(40), PID: 27873 | |
get_index 41 27873 | |
TRAIN MnistSequence.__getitem__(41), PID: 27873 | |
get_index 42 27873 | |
TRAIN MnistSequence.__getitem__(42), PID: 27873 | |
get_index 43 27873 | |
TRAIN MnistSequence.__getitem__(43), PID: 27873 | |
get_index 44 27873 | |
TRAIN MnistSequence.__getitem__(44), PID: 27873 | |
get_index 45 27873 | |
TRAIN MnistSequence.__getitem__(45), PID: 27873 | |
get_index 46 27873 | |
TRAIN MnistSequence.__getitem__(46), PID: 27873 | |
get_index 47 27873 | |
TRAIN MnistSequence.__getitem__(47), PID: 27873 | |
get_index 48 27873 | |
TRAIN MnistSequence.__getitem__(48), PID: 27873 | |
get_index 49 27873 | |
TRAIN MnistSequence.__getitem__(49), PID: 27873 | |
get_index 50 27873 | |
TRAIN MnistSequence.__getitem__(50), PID: 27873 | |
get_index 51 27873 | |
TRAIN MnistSequence.__getitem__(51), PID: 27873 | |
get_index 52 27873 | |
TRAIN MnistSequence.__getitem__(52), PID: 27873 | |
get_index 53 27873 | |
TRAIN MnistSequence.__getitem__(53), PID: 27873 | |
get_index 54 27873 | |
TRAIN MnistSequence.__getitem__(54), PID: 27873 | |
get_index 55 27873 | |
TRAIN MnistSequence.__getitem__(55), PID: 27873 | |
get_index 56 27873 | |
TRAIN MnistSequence.__getitem__(56), PID: 27873 | |
get_index 57 27873 | |
TRAIN MnistSequence.__getitem__(57), PID: 27873 | |
OrderedEnqueuer: queue.put 0 27656 | |
OrderedEnqueuer: queue.put 1 27656 | |
OrderedEnqueuer: queue.put 2 27656 | |
OrderedEnqueuer: queue.put 3 27656 | |
OrderedEnqueuer: queue.put 4 27656 | |
OrderedEnqueuer: queue.put 5 27656 | |
OrderedEnqueuer: queue.put 6 27656 | |
OrderedEnqueuer: queue.put 7 27656 | |
OrderedEnqueuer: queue.put 8 27656 | |
OrderedEnqueuer: queue.put 9 27656 | |
OrderedEnqueuer: queue.put 10 27656 | |
OrderedEnqueuer: queue.put 0 27656 | |
OrderedEnqueuer: queue.put 1 27656 | |
OrderedEnqueuer: queue.put 2 27656 | |
OrderedEnqueuer: queue.put 3 27656 | |
OrderedEnqueuer: queue.put 4 27656 | |
OrderedEnqueuer: queue.put 5 27656 | |
OrderedEnqueuer: queue.put 6 27656 | |
OrderedEnqueuer: queue.put 7 27656 | |
OrderedEnqueuer: queue.put 8 27656 | |
VAL MnistSequence.on_epoch_end(), PID: 27656 | |
58/58 [==============================] - 4s 67ms/step - loss: 1.0477 - accuracy: 0.6979 - val_loss: 0.2774 - val_accuracy: 0.9240 | |
new process 27914 | |
x_train shape: (60000, 28, 28, 1) | |
60000 train samples | |
10000 test samples | |
get_index 0 27914 | |
TRAIN MnistSequence.__getitem__(0), PID: 27914 | |
get_index 1 27914 | |
TRAIN MnistSequence.__getitem__(1), PID: 27914 | |
get_index 2 27914 | |
TRAIN MnistSequence.__getitem__(2), PID: 27914 | |
get_index 3 27914 | |
TRAIN MnistSequence.__getitem__(3), PID: 27914 | |
get_index 4 27914 | |
TRAIN MnistSequence.__getitem__(4), PID: 27914 | |
get_index 5 27914 | |
TRAIN MnistSequence.__getitem__(5), PID: 27914 | |
get_index 6 27914 | |
TRAIN MnistSequence.__getitem__(6), PID: 27914 | |
get_index 7 27914 | |
TRAIN MnistSequence.__getitem__(7), PID: 27914 | |
get_index 8 27914 | |
TRAIN MnistSequence.__getitem__(8), PID: 27914 | |
get_index 9 27914 | |
TRAIN MnistSequence.__getitem__(9), PID: 27914 | |
get_index 10 27914 | |
TRAIN MnistSequence.__getitem__(10), PID: 27914 | |
TRAIN MnistSequence.on_epoch_end(), PID: 27656 | |
Epoch 2/2 | |
new process 27933 | |
x_train shape: (60000, 28, 28, 1) | |
60000 train samples | |
10000 test samples | |
get_index 0 27933 | |
VAL MnistSequence.__getitem__(0), PID: 27933 | |
get_index 1 27933 | |
VAL MnistSequence.__getitem__(1), PID: 27933 | |
get_index 2 27933 | |
VAL MnistSequence.__getitem__(2), PID: 27933 | |
get_index 3 27933 | |
VAL MnistSequence.__getitem__(3), PID: 27933 | |
get_index 4 27933 | |
VAL MnistSequence.__getitem__(4), PID: 27933 | |
get_index 5 27933 | |
VAL MnistSequence.__getitem__(5), PID: 27933 | |
get_index 6 27933 | |
VAL MnistSequence.__getitem__(6), PID: 27933 | |
get_index 7 27933 | |
VAL MnistSequence.__getitem__(7), PID: 27933 | |
get_index 8 27933 | |
VAL MnistSequence.__getitem__(8), PID: 27933 | |
OrderedEnqueuer: queue.put 0 27656 | |
OrderedEnqueuer: queue.put 1 27656 | |
OrderedEnqueuer: queue.put 2 27656 | |
OrderedEnqueuer: queue.put 3 27656 | |
OrderedEnqueuer: queue.put 4 27656 | |
OrderedEnqueuer: queue.put 5 27656 | |
OrderedEnqueuer: queue.put 6 27656 | |
OrderedEnqueuer: queue.put 7 27656 | |
OrderedEnqueuer: queue.put 8 27656 | |
OrderedEnqueuer: queue.put 9 27656 | |
OrderedEnqueuer: queue.put 10 27656 | |
OrderedEnqueuer: queue.put 11 27656 | |
1/58 [..............................] - ETA: 0s - loss: 0.3669 - accuracy: 0.8906OrderedEnqueuer: queue.put 12 27656 | |
OrderedEnqueuer: queue.put 13 27656 | |
OrderedEnqueuer: queue.put 14 27656 | |
OrderedEnqueuer: queue.put 15 27656 | |
5/58 [=>............................] - ETA: 0s - loss: 0.3378 - accuracy: 0.9016OrderedEnqueuer: queue.put 16 27656 | |
OrderedEnqueuer: queue.put 17 27656 | |
OrderedEnqueuer: queue.put 18 27656 | |
OrderedEnqueuer: queue.put 19 27656 | |
9/58 [===>..........................] - ETA: 0s - loss: 0.3377 - accuracy: 0.9019OrderedEnqueuer: queue.put 20 27656 | |
OrderedEnqueuer: queue.put 21 27656 | |
OrderedEnqueuer: queue.put 22 27656 | |
OrderedEnqueuer: queue.put 23 27656 | |
13/58 [=====>........................] - ETA: 0s - loss: 0.3346 - accuracy: 0.9001OrderedEnqueuer: queue.put 24 27656 | |
OrderedEnqueuer: queue.put 25 27656 | |
OrderedEnqueuer: queue.put 26 27656 | |
OrderedEnqueuer: queue.put 27 27656 | |
OrderedEnqueuer: queue.put 28 27656 | |
18/58 [========>.....................] - ETA: 0s - loss: 0.3283 - accuracy: 0.9006OrderedEnqueuer: queue.put 29 27656 | |
OrderedEnqueuer: queue.put 30 27656 | |
OrderedEnqueuer: queue.put 31 27656 | |
OrderedEnqueuer: queue.put 32 27656 | |
OrderedEnqueuer: queue.put 33 27656 | |
23/58 [==========>...................] - ETA: 0s - loss: 0.3163 - accuracy: 0.9039OrderedEnqueuer: queue.put 34 27656 | |
OrderedEnqueuer: queue.put 35 27656 | |
OrderedEnqueuer: queue.put 36 27656 | |
OrderedEnqueuer: queue.put 37 27656 | |
27/58 [============>.................] - ETA: 0s - loss: 0.3113 - accuracy: 0.9052OrderedEnqueuer: queue.put 38 27656 | |
OrderedEnqueuer: queue.put 39 27656 | |
OrderedEnqueuer: queue.put 40 27656 | |
OrderedEnqueuer: queue.put 41 27656 | |
OrderedEnqueuer: queue.put 42 27656 | |
32/58 [===============>..............] - ETA: 0s - loss: 0.3068 - accuracy: 0.9070OrderedEnqueuer: queue.put 43 27656 | |
OrderedEnqueuer: queue.put 44 27656 | |
OrderedEnqueuer: queue.put 45 27656 | |
OrderedEnqueuer: queue.put 46 27656 | |
OrderedEnqueuer: queue.put 47 27656 | |
37/58 [==================>...........] - ETA: 0s - loss: 0.2977 - accuracy: 0.9097OrderedEnqueuer: queue.put 48 27656 | |
OrderedEnqueuer: queue.put 49 27656 | |
OrderedEnqueuer: queue.put 50 27656 | |
OrderedEnqueuer: queue.put 51 27656 | |
OrderedEnqueuer: queue.put 52 27656 | |
42/58 [====================>.........] - ETA: 0s - loss: 0.2907 - accuracy: 0.9121OrderedEnqueuer: queue.put 53 27656 | |
OrderedEnqueuer: queue.put 54 27656 | |
OrderedEnqueuer: queue.put 55 27656 | |
OrderedEnqueuer: queue.put 56 27656 | |
OrderedEnqueuer: queue.put 57 27656 | |
47/58 [=======================>......] - ETA: 0s - loss: 0.2859 - accuracy: 0.9131 | |
52/58 [=========================>....] - ETA: 0s - loss: 0.2803 - accuracy: 0.9151 | |
57/58 [============================>.] - ETA: 0s - loss: 0.2710 - accuracy: 0.9181new process 27995 | |
x_train shape: (60000, 28, 28, 1) | |
60000 train samples | |
10000 test samples | |
get_index 0 27995 | |
TRAIN MnistSequence.__getitem__(0), PID: 27995 | |
get_index 1 27995 | |
TRAIN MnistSequence.__getitem__(1), PID: 27995 | |
get_index 2 27995 | |
TRAIN MnistSequence.__getitem__(2), PID: 27995 | |
get_index 3 27995 | |
TRAIN MnistSequence.__getitem__(3), PID: 27995 | |
get_index 4 27995 | |
TRAIN MnistSequence.__getitem__(4), PID: 27995 | |
get_index 5 27995 | |
TRAIN MnistSequence.__getitem__(5), PID: 27995 | |
get_index 6 27995 | |
TRAIN MnistSequence.__getitem__(6), PID: 27995 | |
get_index 7 27995 | |
TRAIN MnistSequence.__getitem__(7), PID: 27995 | |
get_index 8 27995 | |
TRAIN MnistSequence.__getitem__(8), PID: 27995 | |
get_index 9 27995 | |
TRAIN MnistSequence.__getitem__(9), PID: 27995 | |
get_index 10 27995 | |
TRAIN MnistSequence.__getitem__(10), PID: 27995 | |
get_index 11 27995 | |
TRAIN MnistSequence.__getitem__(11), PID: 27995 | |
get_index 12 27995 | |
TRAIN MnistSequence.__getitem__(12), PID: 27995 | |
get_index 13 27995 | |
TRAIN MnistSequence.__getitem__(13), PID: 27995 | |
get_index 14 27995 | |
TRAIN MnistSequence.__getitem__(14), PID: 27995 | |
get_index 15 27995 | |
TRAIN MnistSequence.__getitem__(15), PID: 27995 | |
get_index 16 27995 | |
TRAIN MnistSequence.__getitem__(16), PID: 27995 | |
get_index 17 27995 | |
TRAIN MnistSequence.__getitem__(17), PID: 27995 | |
get_index 18 27995 | |
TRAIN MnistSequence.__getitem__(18), PID: 27995 | |
get_index 19 27995 | |
TRAIN MnistSequence.__getitem__(19), PID: 27995 | |
get_index 20 27995 | |
TRAIN MnistSequence.__getitem__(20), PID: 27995 | |
get_index 21 27995 | |
TRAIN MnistSequence.__getitem__(21), PID: 27995 | |
get_index 22 27995 | |
TRAIN MnistSequence.__getitem__(22), PID: 27995 | |
get_index 23 27995 | |
TRAIN MnistSequence.__getitem__(23), PID: 27995 | |
get_index 24 27995 | |
TRAIN MnistSequence.__getitem__(24), PID: 27995 | |
get_index 25 27995 | |
TRAIN MnistSequence.__getitem__(25), PID: 27995 | |
get_index 26 27995 | |
TRAIN MnistSequence.__getitem__(26), PID: 27995 | |
get_index 27 27995 | |
TRAIN MnistSequence.__getitem__(27), PID: 27995 | |
get_index 28 27995 | |
TRAIN MnistSequence.__getitem__(28), PID: 27995 | |
get_index 29 27995 | |
TRAIN MnistSequence.__getitem__(29), PID: 27995 | |
get_index 30 27995 | |
TRAIN MnistSequence.__getitem__(30), PID: 27995 | |
get_index 31 27995 | |
TRAIN MnistSequence.__getitem__(31), PID: 27995 | |
get_index 32 27995 | |
TRAIN MnistSequence.__getitem__(32), PID: 27995 | |
get_index 33 27995 | |
TRAIN MnistSequence.__getitem__(33), PID: 27995 | |
get_index 34 27995 | |
TRAIN MnistSequence.__getitem__(34), PID: 27995 | |
get_index 35 27995 | |
TRAIN MnistSequence.__getitem__(35), PID: 27995 | |
get_index 36 27995 | |
TRAIN MnistSequence.__getitem__(36), PID: 27995 | |
get_index 37 27995 | |
TRAIN MnistSequence.__getitem__(37), PID: 27995 | |
get_index 38 27995 | |
TRAIN MnistSequence.__getitem__(38), PID: 27995 | |
get_index 39 27995 | |
TRAIN MnistSequence.__getitem__(39), PID: 27995 | |
get_index 40 27995 | |
TRAIN MnistSequence.__getitem__(40), PID: 27995 | |
get_index 41 27995 | |
TRAIN MnistSequence.__getitem__(41), PID: 27995 | |
get_index 42 27995 | |
TRAIN MnistSequence.__getitem__(42), PID: 27995 | |
get_index 43 27995 | |
TRAIN MnistSequence.__getitem__(43), PID: 27995 | |
get_index 44 27995 | |
TRAIN MnistSequence.__getitem__(44), PID: 27995 | |
get_index 45 27995 | |
TRAIN MnistSequence.__getitem__(45), PID: 27995 | |
get_index 46 27995 | |
TRAIN MnistSequence.__getitem__(46), PID: 27995 | |
get_index 47 27995 | |
TRAIN MnistSequence.__getitem__(47), PID: 27995 | |
get_index 48 27995 | |
TRAIN MnistSequence.__getitem__(48), PID: 27995 | |
get_index 49 27995 | |
TRAIN MnistSequence.__getitem__(49), PID: 27995 | |
get_index 50 27995 | |
TRAIN MnistSequence.__getitem__(50), PID: 27995 | |
get_index 51 27995 | |
TRAIN MnistSequence.__getitem__(51), PID: 27995 | |
get_index 52 27995 | |
TRAIN MnistSequence.__getitem__(52), PID: 27995 | |
get_index 53 27995 | |
TRAIN MnistSequence.__getitem__(53), PID: 27995 | |
get_index 54 27995 | |
TRAIN MnistSequence.__getitem__(54), PID: 27995 | |
get_index 55 27995 | |
TRAIN MnistSequence.__getitem__(55), PID: 27995 | |
get_index 56 27995 | |
TRAIN MnistSequence.__getitem__(56), PID: 27995 | |
get_index 57 27995 | |
TRAIN MnistSequence.__getitem__(57), PID: 27995 | |
TRAIN MnistSequence.on_epoch_end(), PID: 27656 | |
OrderedEnqueuer: queue.put 0 27656 | |
OrderedEnqueuer: queue.put 1 27656 | |
OrderedEnqueuer: queue.put 2 27656 | |
OrderedEnqueuer: queue.put 3 27656 | |
OrderedEnqueuer: queue.put 4 27656 | |
OrderedEnqueuer: queue.put 5 27656 | |
OrderedEnqueuer: queue.put 6 27656 | |
OrderedEnqueuer: queue.put 7 27656 | |
OrderedEnqueuer: queue.put 8 27656 | |
VAL MnistSequence.on_epoch_end(), PID: 27656 | |
58/58 [==============================] - 4s 61ms/step - loss: 0.2684 - accuracy: 0.9189 - val_loss: 0.1444 - val_accuracy: 0.9583 | |
new process 28084 | |
x_train shape: (60000, 28, 28, 1) | |
60000 train samples | |
10000 test samples | |
get_index 0 28084 | |
VAL MnistSequence.__getitem__(0), PID: 28084 | |
get_index 1 28084 | |
VAL MnistSequence.__getitem__(1), PID: 28084 | |
get_index 2 28084 | |
VAL MnistSequence.__getitem__(2), PID: 28084 | |
get_index 3 28084 | |
VAL MnistSequence.__getitem__(3), PID: 28084 | |
get_index 4 28084 | |
VAL MnistSequence.__getitem__(4), PID: 28084 | |
get_index 5 28084 | |
VAL MnistSequence.__getitem__(5), PID: 28084 | |
get_index 6 28084 | |
VAL MnistSequence.__getitem__(6), PID: 28084 | |
get_index 7 28084 | |
VAL MnistSequence.__getitem__(7), PID: 28084 | |
get_index 8 28084 | |
VAL MnistSequence.__getitem__(8), PID: 28084 | |
TRAIN MnistSequence.on_epoch_end(), PID: 27656 | |
new process 28100 | |
x_train shape: (60000, 28, 28, 1) | |
60000 train samples | |
10000 test samples |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
new process 28850 | |
x_train shape: (60000, 28, 28, 1) | |
60000 train samples | |
10000 test samples | |
main process 28850 | |
TRAIN MnistSequence.__init__(), PID: 28850 len: 58 | |
VAL MnistSequence.__init__(), PID: 28850 len: 9 | |
Model: "sequential" | |
_________________________________________________________________ | |
Layer (type) Output Shape Param # | |
================================================================= | |
conv2d (Conv2D) (None, 26, 26, 32) 320 | |
_________________________________________________________________ | |
max_pooling2d (MaxPooling2D) (None, 13, 13, 32) 0 | |
_________________________________________________________________ | |
conv2d_1 (Conv2D) (None, 11, 11, 64) 18496 | |
_________________________________________________________________ | |
max_pooling2d_1 (MaxPooling2 (None, 5, 5, 64) 0 | |
_________________________________________________________________ | |
flatten (Flatten) (None, 1600) 0 | |
_________________________________________________________________ | |
dropout (Dropout) (None, 1600) 0 | |
_________________________________________________________________ | |
dense (Dense) (None, 10) 16010 | |
================================================================= | |
Total params: 34,826 | |
Trainable params: 34,826 | |
Non-trainable params: 0 | |
_________________________________________________________________ | |
TRAIN MnistSequence.__getitem__(0), PID: 28850 | |
Epoch 1/2 | |
TRAIN MnistSequence.__getitem__(0), PID: 28850 | |
TRAIN MnistSequence.__getitem__(1), PID: 28850 | |
1/58 [..............................] - ETA: 0s - loss: 2.3016 - accuracy: 0.0850TRAIN MnistSequence.__getitem__(2), PID: 28850 | |
TRAIN MnistSequence.__getitem__(3), PID: 28850 | |
TRAIN MnistSequence.__getitem__(4), PID: 28850 | |
TRAIN MnistSequence.__getitem__(5), PID: 28850 | |
TRAIN MnistSequence.__getitem__(6), PID: 28850 | |
6/58 [==>...........................] - ETA: 0s - loss: 2.2262 - accuracy: 0.2528TRAIN MnistSequence.__getitem__(7), PID: 28850 | |
TRAIN MnistSequence.__getitem__(8), PID: 28850 | |
TRAIN MnistSequence.__getitem__(9), PID: 28850 | |
TRAIN MnistSequence.__getitem__(10), PID: 28850 | |
TRAIN MnistSequence.__getitem__(11), PID: 28850 | |
11/58 [====>.........................] - ETA: 0s - loss: 2.1398 - accuracy: 0.3550TRAIN MnistSequence.__getitem__(12), PID: 28850 | |
TRAIN MnistSequence.__getitem__(13), PID: 28850 | |
TRAIN MnistSequence.__getitem__(14), PID: 28850 | |
TRAIN MnistSequence.__getitem__(15), PID: 28850 | |
TRAIN MnistSequence.__getitem__(16), PID: 28850 | |
16/58 [=======>......................] - ETA: 0s - loss: 2.0294 - accuracy: 0.4228TRAIN MnistSequence.__getitem__(17), PID: 28850 | |
TRAIN MnistSequence.__getitem__(18), PID: 28850 | |
TRAIN MnistSequence.__getitem__(19), PID: 28850 | |
TRAIN MnistSequence.__getitem__(20), PID: 28850 | |
TRAIN MnistSequence.__getitem__(21), PID: 28850 | |
21/58 [=========>....................] - ETA: 0s - loss: 1.8838 - accuracy: 0.4851TRAIN MnistSequence.__getitem__(22), PID: 28850 | |
TRAIN MnistSequence.__getitem__(23), PID: 28850 | |
TRAIN MnistSequence.__getitem__(24), PID: 28850 | |
TRAIN MnistSequence.__getitem__(25), PID: 28850 | |
TRAIN MnistSequence.__getitem__(26), PID: 28850 | |
26/58 [============>.................] - ETA: 0s - loss: 1.7252 - accuracy: 0.5284TRAIN MnistSequence.__getitem__(27), PID: 28850 | |
TRAIN MnistSequence.__getitem__(28), PID: 28850 | |
TRAIN MnistSequence.__getitem__(29), PID: 28850 | |
TRAIN MnistSequence.__getitem__(30), PID: 28850 | |
TRAIN MnistSequence.__getitem__(31), PID: 28850 | |
31/58 [===============>..............] - ETA: 0s - loss: 1.5850 - accuracy: 0.5624TRAIN MnistSequence.__getitem__(32), PID: 28850 | |
TRAIN MnistSequence.__getitem__(33), PID: 28850 | |
TRAIN MnistSequence.__getitem__(34), PID: 28850 | |
TRAIN MnistSequence.__getitem__(35), PID: 28850 | |
TRAIN MnistSequence.__getitem__(36), PID: 28850 | |
36/58 [=================>............] - ETA: 0s - loss: 1.4564 - accuracy: 0.5941TRAIN MnistSequence.__getitem__(37), PID: 28850 | |
TRAIN MnistSequence.__getitem__(38), PID: 28850 | |
TRAIN MnistSequence.__getitem__(39), PID: 28850 | |
TRAIN MnistSequence.__getitem__(40), PID: 28850 | |
TRAIN MnistSequence.__getitem__(41), PID: 28850 | |
41/58 [====================>.........] - ETA: 0s - loss: 1.3490 - accuracy: 0.6215TRAIN MnistSequence.__getitem__(42), PID: 28850 | |
TRAIN MnistSequence.__getitem__(43), PID: 28850 | |
TRAIN MnistSequence.__getitem__(44), PID: 28850 | |
TRAIN MnistSequence.__getitem__(45), PID: 28850 | |
TRAIN MnistSequence.__getitem__(46), PID: 28850 | |
46/58 [======================>.......] - ETA: 0s - loss: 1.2573 - accuracy: 0.6446TRAIN MnistSequence.__getitem__(47), PID: 28850 | |
TRAIN MnistSequence.__getitem__(48), PID: 28850 | |
TRAIN MnistSequence.__getitem__(49), PID: 28850 | |
TRAIN MnistSequence.__getitem__(50), PID: 28850 | |
TRAIN MnistSequence.__getitem__(51), PID: 28850 | |
51/58 [=========================>....] - ETA: 0s - loss: 1.1793 - accuracy: 0.6656TRAIN MnistSequence.__getitem__(52), PID: 28850 | |
TRAIN MnistSequence.__getitem__(53), PID: 28850 | |
TRAIN MnistSequence.__getitem__(54), PID: 28850 | |
TRAIN MnistSequence.__getitem__(55), PID: 28850 | |
TRAIN MnistSequence.__getitem__(56), PID: 28850 | |
56/58 [===========================>..] - ETA: 0s - loss: 1.1076 - accuracy: 0.6852TRAIN MnistSequence.__getitem__(57), PID: 28850 | |
VAL MnistSequence.__getitem__(0), PID: 28850 | |
VAL MnistSequence.__getitem__(0), PID: 28850 | |
VAL MnistSequence.__getitem__(1), PID: 28850 | |
VAL MnistSequence.__getitem__(2), PID: 28850 | |
VAL MnistSequence.__getitem__(3), PID: 28850 | |
VAL MnistSequence.__getitem__(4), PID: 28850 | |
VAL MnistSequence.__getitem__(5), PID: 28850 | |
VAL MnistSequence.__getitem__(6), PID: 28850 | |
VAL MnistSequence.__getitem__(7), PID: 28850 | |
VAL MnistSequence.__getitem__(8), PID: 28850 | |
VAL MnistSequence.on_epoch_end(), PID: 28850 | |
58/58 [==============================] - 1s 14ms/step - loss: 1.0789 - accuracy: 0.6934 - val_loss: 0.2847 - val_accuracy: 0.9243 | |
TRAIN MnistSequence.on_epoch_end(), PID: 28850 | |
Epoch 2/2 | |
TRAIN MnistSequence.__getitem__(0), PID: 28850 | |
TRAIN MnistSequence.__getitem__(1), PID: 28850 | |
1/58 [..............................] - ETA: 0s - loss: 0.3943 - accuracy: 0.8818TRAIN MnistSequence.__getitem__(2), PID: 28850 | |
TRAIN MnistSequence.__getitem__(3), PID: 28850 | |
TRAIN MnistSequence.__getitem__(4), PID: 28850 | |
TRAIN MnistSequence.__getitem__(5), PID: 28850 | |
TRAIN MnistSequence.__getitem__(6), PID: 28850 | |
6/58 [==>...........................] - ETA: 0s - loss: 0.3405 - accuracy: 0.8979TRAIN MnistSequence.__getitem__(7), PID: 28850 | |
TRAIN MnistSequence.__getitem__(8), PID: 28850 | |
TRAIN MnistSequence.__getitem__(9), PID: 28850 | |
TRAIN MnistSequence.__getitem__(10), PID: 28850 | |
TRAIN MnistSequence.__getitem__(11), PID: 28850 | |
11/58 [====>.........................] - ETA: 0s - loss: 0.3339 - accuracy: 0.8999TRAIN MnistSequence.__getitem__(12), PID: 28850 | |
TRAIN MnistSequence.__getitem__(13), PID: 28850 | |
TRAIN MnistSequence.__getitem__(14), PID: 28850 | |
TRAIN MnistSequence.__getitem__(15), PID: 28850 | |
TRAIN MnistSequence.__getitem__(16), PID: 28850 | |
16/58 [=======>......................] - ETA: 0s - loss: 0.3366 - accuracy: 0.8976TRAIN MnistSequence.__getitem__(17), PID: 28850 | |
TRAIN MnistSequence.__getitem__(18), PID: 28850 | |
TRAIN MnistSequence.__getitem__(19), PID: 28850 | |
TRAIN MnistSequence.__getitem__(20), PID: 28850 | |
TRAIN MnistSequence.__getitem__(21), PID: 28850 | |
21/58 [=========>....................] - ETA: 0s - loss: 0.3233 - accuracy: 0.9021TRAIN MnistSequence.__getitem__(22), PID: 28850 | |
TRAIN MnistSequence.__getitem__(23), PID: 28850 | |
TRAIN MnistSequence.__getitem__(24), PID: 28850 | |
TRAIN MnistSequence.__getitem__(25), PID: 28850 | |
TRAIN MnistSequence.__getitem__(26), PID: 28850 | |
26/58 [============>.................] - ETA: 0s - loss: 0.3125 - accuracy: 0.9060TRAIN MnistSequence.__getitem__(27), PID: 28850 | |
TRAIN MnistSequence.__getitem__(28), PID: 28850 | |
TRAIN MnistSequence.__getitem__(29), PID: 28850 | |
TRAIN MnistSequence.__getitem__(30), PID: 28850 | |
TRAIN MnistSequence.__getitem__(31), PID: 28850 | |
31/58 [===============>..............] - ETA: 0s - loss: 0.3087 - accuracy: 0.9076TRAIN MnistSequence.__getitem__(32), PID: 28850 | |
TRAIN MnistSequence.__getitem__(33), PID: 28850 | |
TRAIN MnistSequence.__getitem__(34), PID: 28850 | |
TRAIN MnistSequence.__getitem__(35), PID: 28850 | |
TRAIN MnistSequence.__getitem__(36), PID: 28850 | |
36/58 [=================>............] - ETA: 0s - loss: 0.2993 - accuracy: 0.9103TRAIN MnistSequence.__getitem__(37), PID: 28850 | |
TRAIN MnistSequence.__getitem__(38), PID: 28850 | |
TRAIN MnistSequence.__getitem__(39), PID: 28850 | |
TRAIN MnistSequence.__getitem__(40), PID: 28850 | |
TRAIN MnistSequence.__getitem__(41), PID: 28850 | |
41/58 [====================>.........] - ETA: 0s - loss: 0.2926 - accuracy: 0.9121TRAIN MnistSequence.__getitem__(42), PID: 28850 | |
TRAIN MnistSequence.__getitem__(43), PID: 28850 | |
TRAIN MnistSequence.__getitem__(44), PID: 28850 | |
TRAIN MnistSequence.__getitem__(45), PID: 28850 | |
TRAIN MnistSequence.__getitem__(46), PID: 28850 | |
46/58 [======================>.......] - ETA: 0s - loss: 0.2877 - accuracy: 0.9134TRAIN MnistSequence.__getitem__(47), PID: 28850 | |
TRAIN MnistSequence.__getitem__(48), PID: 28850 | |
TRAIN MnistSequence.__getitem__(49), PID: 28850 | |
TRAIN MnistSequence.__getitem__(50), PID: 28850 | |
TRAIN MnistSequence.__getitem__(51), PID: 28850 | |
51/58 [=========================>....] - ETA: 0s - loss: 0.2823 - accuracy: 0.9153TRAIN MnistSequence.__getitem__(52), PID: 28850 | |
TRAIN MnistSequence.__getitem__(53), PID: 28850 | |
TRAIN MnistSequence.__getitem__(54), PID: 28850 | |
TRAIN MnistSequence.__getitem__(55), PID: 28850 | |
TRAIN MnistSequence.__getitem__(56), PID: 28850 | |
56/58 [===========================>..] - ETA: 0s - loss: 0.2742 - accuracy: 0.9181TRAIN MnistSequence.__getitem__(57), PID: 28850 | |
VAL MnistSequence.__getitem__(0), PID: 28850 | |
VAL MnistSequence.__getitem__(1), PID: 28850 | |
VAL MnistSequence.__getitem__(2), PID: 28850 | |
VAL MnistSequence.__getitem__(3), PID: 28850 | |
VAL MnistSequence.__getitem__(4), PID: 28850 | |
VAL MnistSequence.__getitem__(5), PID: 28850 | |
VAL MnistSequence.__getitem__(6), PID: 28850 | |
VAL MnistSequence.__getitem__(7), PID: 28850 | |
VAL MnistSequence.__getitem__(8), PID: 28850 | |
VAL MnistSequence.on_epoch_end(), PID: 28850 | |
58/58 [==============================] - 1s 12ms/step - loss: 0.2695 - accuracy: 0.9195 - val_loss: 0.1456 - val_accuracy: 0.9588 | |
TRAIN MnistSequence.on_epoch_end(), PID: 28850 |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment