Created
July 21, 2023 05:47
-
-
Save c-bata/ffcf52ca5c6fee5ec64e56eee451aabd to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from __future__ import annotations | |
import os | |
import shutil | |
import uuid | |
import tempfile | |
from typing import NoReturn | |
import optuna | |
import streamlit as st | |
from optuna.trial import FrozenTrial, TrialState | |
from optuna_dashboard.artifact.file_system import FileSystemBackend | |
from optuna_dashboard._form_widget import get_form_widgets_json | |
from optuna_dashboard._note import get_note_from_system_attrs | |
from optuna_dashboard.streamlit import render_trial_note | |
from optuna_dashboard.streamlit import render_objective_form_widgets | |
artifact_path = os.path.join(os.path.dirname(__file__), "artifact") | |
artifact_backend = FileSystemBackend(base_path=artifact_path) | |
def get_tmp_dir() -> str: | |
if "tmp_dir" not in st.session_state: | |
tmp_dir_name = str(uuid.uuid4()) | |
tmp_dir_path = os.path.join(tempfile.gettempdir(), tmp_dir_name) | |
os.makedirs(tmp_dir_path, exist_ok=True) | |
st.session_state.tmp_dir = tmp_dir_path | |
return st.session_state.tmp_dir | |
def start_streamlit() -> None: | |
tmpdir = get_tmp_dir() | |
study = optuna.load_study( | |
storage="sqlite:///streamlit-db.sqlite3", study_name="Human-in-the-loop Optimization" | |
) | |
selected_trial = st.sidebar.selectbox( | |
"一覧", study.trials, format_func=lambda t: t.number | |
) | |
render_trial_note(study, selected_trial) | |
artifact_id = selected_trial.user_attrs.get("artifact_id") | |
if artifact_id: | |
with artifact_backend.open(artifact_id) as fsrc: | |
tmp_img_path = os.path.join(tmpdir, artifact_id + ".png") | |
with open(tmp_img_path, "wb") as fdst: | |
shutil.copyfileobj(fsrc, fdst) | |
st.image(tmp_img_path, caption="Image") | |
if selected_trial.state == TrialState.RUNNING: | |
render_objective_form_widgets(study, selected_trial) | |
if __name__ == "__main__": | |
start_streamlit() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import os | |
import time | |
import tempfile | |
from typing import NoReturn | |
import optuna | |
from optuna.trial import TrialState | |
from optuna_dashboard import ChoiceWidget | |
from optuna_dashboard import register_objective_form_widgets | |
from optuna_dashboard import save_note | |
from optuna_dashboard.artifact import get_artifact_path | |
from optuna_dashboard.artifact import upload_artifact | |
from optuna_dashboard.artifact.file_system import FileSystemBackend | |
from optuna_dashboard.streamlit import render_trial_note | |
from optuna_dashboard.streamlit import render_objective_form_widgets | |
from PIL import Image | |
def suggest_and_generate_image(study: optuna.Study, artifact_backend: FileSystemBackend, tmpdir: str) -> None: | |
# 1. Ask new parameters | |
trial = study.ask() | |
r = trial.suggest_int("r", 0, 255) | |
g = trial.suggest_int("g", 0, 255) | |
b = trial.suggest_int("b", 0, 255) | |
# 2. Generate image | |
image_path = os.path.join(tmpdir, f"sample-{trial.number}.png") | |
image = Image.new("RGB", (320, 240), color=(r, g, b)) | |
image.save(image_path) | |
# 3. Upload Artifact | |
artifact_id = upload_artifact(artifact_backend, trial, image_path) | |
trial.set_user_attr("artifact_id", artifact_id) | |
# 4. Save Note | |
save_note(trial, f"## Trial {trial.number}") | |
def main() -> NoReturn: | |
# 1. Create Artifact Store | |
artifact_path = os.path.join(os.path.dirname(__file__), "artifact") | |
artifact_backend = FileSystemBackend(base_path=artifact_path) | |
if not os.path.exists(artifact_path): | |
os.mkdir(artifact_path) | |
# 2. Create Study | |
study = optuna.create_study( | |
study_name="Human-in-the-loop Optimization", | |
storage="sqlite:///streamlit-db.sqlite3", | |
sampler=optuna.samplers.TPESampler(constant_liar=True, n_startup_trials=5), | |
load_if_exists=True, | |
) | |
study.set_metric_names(["Looks like sunset color?"]) | |
# 4. Register ChoiceWidget | |
register_objective_form_widgets( | |
study, | |
widgets=[ | |
ChoiceWidget( | |
choices=["Good 👍", "So-so👌", "Bad 👎"], | |
values=[-1, 0, 1], | |
description="Please input your score!", | |
), | |
], | |
) | |
# 5. Start Human-in-the-loop Optimization | |
n_batch = 4 | |
with tempfile.TemporaryDirectory() as tmpdir: | |
while True: | |
running_trials = study.get_trials(deepcopy=False, states=(TrialState.RUNNING,)) | |
if len(running_trials) >= n_batch: | |
time.sleep(1) # Avoid busy-loop | |
continue | |
suggest_and_generate_image(study, artifact_backend, tmpdir) | |
if __name__ == "__main__": | |
main() |
Author
c-bata
commented
Jul 21, 2023
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment