Created
October 18, 2017 20:22
-
-
Save c0nn3r/ed9cea07e4404c80edf72fd1d6b060c8 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import re | |
import os | |
import glob | |
import pandas as pd | |
import matplotlib.pyplot as plt | |
from collections import OrderedDict | |
fig_size = [12, 9] | |
plt.rcParams["figure.figsize"] = fig_size | |
def parse_filepath(string): | |
head, tail = os.path.split(string) | |
return re.search(r'_(.*),', tail).group(1) | |
def load_csv_files(path, index_column='Step', wanted_columns=[1, 2], skip_rows=2): | |
expanded_path = os.path.abspath(path) | |
csv_filepaths = glob.glob(os.path.join(expanded_path, '*.csv')) | |
dataframe_from_each_file = (pd.read_csv(filepath, | |
index_col=index_column, | |
names=['Wall time', 'Step', parse_filepath(filepath)], | |
skiprows=skip_rows, | |
header=None, | |
usecols=wanted_columns) | |
for filepath in csv_filepaths) | |
concatenated_dataframe = pd.concat(dataframe_from_each_file, axis=1, join='inner') | |
return concatenated_dataframe | |
experiment_logs = load_csv_files('./experiment_results/mnist_losses') | |
def add_rolling_average(dataframe, window=6): | |
for column in dataframe: | |
dataframe[f'{column}_rolling_average'] = dataframe[column].rolling(window=window).mean() | |
add_rolling_average(experiment_logs) | |
colors = ['tab:blue', 'tab:orange', 'tab:green', 'tab:red', 'tab:purple', 'tab:brown', 'tab:pink', 'tab:gray', 'tab:olive', 'tab:cyan'] | |
def graph_experiment_losses(dataframe, number_of_logs=4, filters=('average')): | |
fig = plt.figure() | |
ax = fig.add_subplot() | |
axes = experiment_logs.plot(ax=ax, color=colors[:number_of_logs], logy=True, sort_columns=True) | |
axes.set_xlabel('Step', fontsize=16) | |
axes.set_ylabel('Training Loss', fontsize=16) | |
axes.spines["top"].set_visible(False) | |
axes.spines["bottom"].set_visible(False) | |
axes.spines["right"].set_visible(False) | |
axes.spines["left"].set_visible(False) | |
plt.xticks(fontsize=12) | |
plt.yticks(fontsize=12) | |
for i in range(number_of_logs): | |
axes.lines[i].set_alpha(0.3) | |
axes.lines[i].set_alpha(0.3) | |
handles, labels = plt.gca().get_legend_handles_labels() | |
by_label = OrderedDict((label, handel) for label, handel in zip(labels, handles) if not label.endswith(filters)) | |
legend = plt.legend(by_label.values(),by_label.keys(), frameon=False, prop={'size': 12}) | |
for leg in legend.legendHandles: | |
leg.set_alpha(1) | |
graph_experiment_losses(experiment_logs) | |
plt.savefig('losses.png', format='png', bbox_inches='tight') |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment